

Available online at www.sciencedirect.com

Tetrahedron

Tetrahedron 60 (2004) 2539-2550

Preparation of optically pure cross-conjugated cyclopentadienones

Jonathan P. Eddolls,^{a,*} Mazhar Iqbal,^a Stanley M. Roberts^a and M. Gabriella Santoro^b

^aCharterhouse Therapeutics Laboratories, Department of Chemistry, Robert Robinson Building, University of Liverpool, Liverpool L69 7ZD, UK

^bDepartment of Biology, University of Rome, Tor Vergata, Via della Ricerca Scientifica, 100-133 Rome, Italy

Received 22 October 2003; revised 22 December 2003; accepted 15 January 2004

Abstract—The synthesis of optically pure cross-conjugated cyclopentadienones is readily achieved in two steps via a one-pot alkylcuprate addition/aldol condensation/dehydration sequence using racemic or enantioenriched *endo*-3a,4,7,7a-tetrahydro-1*H*-4,7-methano-inden-1-ones followed by microwave-mediated Lewis acid-catalysed *retro* Diels–Alder reaction. An alternative route involving a modified Baylis–Hillman protocol followed by conjugate addition with alkylcuprates and a retro Diels–Alder reaction was also investigated. © 2004 Elsevier Ltd. All rights reserved.

1. Introduction

Recent reports of the potent biological properties exhibited by many prostanoid compounds containing a cross-conjugated cyclopentadienone unit has heightened our interest in the synthesis of this important structural motif.¹

The clavulone series of marine natural products 1,² the unsaturated prostaglandin (PG) $\Delta^{12,14}$ -15-deoxy-PG-J₂ 2,³ the related C-18 chromomoric acid 3⁴ and the potential anticancer agent TEI-9826 4⁵ all contain the 5-alkylidene-cyclopent-2-enone unit (Fig. 1). In addition, similar compounds have recently been implicated in the development and progression of atherosclerosis.⁶

In general there exists a number of approaches to crossconjugated dienone-containing ring structures **D** from enones **A** that involve the formation of a β -hydroxy alkylated species **C**, their further derivatisation and subsequent β -elimination (Scheme 1).

In many of these cases, the β -hydroxy alkylated moiety of **C** can be obtained by either trapping the enolate **B** (resulting from conjugate addition) with a suitable aldehyde^{6b,7} or through conjugate addition to an α -alkoxy alkylated enone **F** (derived from seleno enolate **E**) using alkylcuprates, as reported by Noyori.⁸

Although the enolate trapping route has enjoyed considerable popularity in the synthesis of structures of type **C**, Noyori's pathway has not been employed to the same extent, probably due to the greater number of steps involved, as well as the potential hazards from handling toxic selenide reagents and intermediates. Interestingly, Noyori's procedure had notable mechanistic similarities with the Baylis–Hillman reaction and, in particular, with a recently reported variant involving mild cooperative catalysis (from tributylphosphine as a Lewis base with phenol as a Brønsted acid) to give α -methylene- β hydroxy enones **F** via enolate **G** and adduct **H** (Scheme 2).⁹

We surmised that a novel synthetic sequence that comprised a mechanistically similar and higher yielding Baylis– Hillman reaction as its key step, circumventing the disadvantages of Noyori's method, might offer a more efficient approach to cross-conjugated cyclopentadienones.

2. Results and discussion

We chose to conduct the modified Baylis–Hillman reaction on racemic *endo*-3a,4,7,7a-tetrahydro-1*H*-4,7-methanoinden-1-one 5^{10} to give β -hydroxy alkylated enones which we wished to derivatise (e.g. by acetoxylation) and finally perform an alkylcuprate conjugate addition to give an exocyclic alkene, after spontaneous β -elimination. Lewis acid-catalysed *retro* Diels–Alder would then release the corresponding cross-conjugated cyclopentadienone (Scheme 3).

Keywords: Microwave-promoted reactions; *retro*-Diels-Alder reaction; 4-Alkyl 5-alkyli-denecyclopent-2-enones; Baylis-Hillman reaction.

^{*} Corresponding author. Tel.: +44-151-794-3501; fax: +44-151-794-2304; e-mail address: smrsm@liv.ac.uk

^{0040–4020/\$ -} see front matter @ 2004 Elsevier Ltd. All rights reserved. doi:10.1016/j.tet.2004.01.047

J. P. Eddolls et al. / Tetrahedron 60 (2004) 2539-2550

Figure 1. Alkylidenecyclopentenones of biological interest.

The Baylis–Hillman adducts 6-10 were easily prepared, usually in high yield (87–93%) after stirring a mixture of racemic enone, phenol, tributylphosphine and aldehyde in THF at room temperature for 24 h. The corresponding acetates 11-15 were prepared in the standard manner (47–97% yield).

The key conjugate addition/elimination tandem reaction worked well for the isopropyl compound 11, furnishing the alkylated products 16 and 17 as the only isolable compounds in 57 and 59% yield, respectively. However, the procedure was not as satisfactory for other substrates. For example, when the compound 12 was used as starting material in a reaction with dimethylcuprate, the desired compound 18 was formed (34%) in admixture with the bis-alkylated product 25 (28%). Reaction of 12 with butylcyanocuprate was even more complex furnishing the bis-alkylated product 26 (7%) as well as the required product 19 which was not separated from the isomer 27 (42% yield; ratio 19:27 9:1 by NMR spectroscopy). Similarly addition of methylcyanocuprate to the acetoxyenone 13 was not regioselective, the desired product 20(61%)being contaminated with the (separable) isomer 28 (19%).

Clearly continuing with this strategy with its unpredictable overall yields and, more significantly, the often-observed poor regioselectivity, was not appealing. Our attention turned to a one-pot alkylcuprate addition/aldol condensation/ dehydration procedure which had literature precedent^{4d} and, we felt, could be applied with more confidence to racemic and enantioenriched endo-3a,4,7,7a-tetrahydro-4,7-methanoinden-1-one 5 in order to access a range of target compounds. Indeed cross-conjugated cyclopentenedione precursors have been obtained from 5 previously.¹¹ However the required intermediate was obtained only after isolation of the aldol and subsequent acid-catalysed rearrangement, generating a mixture of Z- and E-geometrical isomers (Scheme 4). More recently cross-conjugated cyclopentadienones have been accessed from enone 29 using a one-pot conjugate addition/ Peterson olefination sequence followed by a retro Diels-Alder reaction.12

Both enantioenriched (+)-5 and (-)-5 were available in high yield and on a multi-gram scale.¹³ The enantiomers underwent facile chemo- and diastereoselective 1,4-conjugate addition with an alkylcuprate; aldehyde quench of the intermediate enolate and spontaneous dehydration upon

Scheme 1. Approaches towards β-hydroxy alkylated species.

2540

Scheme 2. An approach comprising the modified Baylis-Hillman reaction.

Scheme 3. Baylis-Hillman adducts and cross-conjugated cyclopentadienones derived from (\pm) -endo enone 5.

work-up furnished the desired products (Table 1). Generally, the one-pot three component coupling proceeded smoothly giving good or very good yields of *exo*-cyclic enones. Entries 1-4 and 10, demonstrated that the reaction exhibited exclusively *E*-selectivity, whilst the remainder (entries 5-8) provided the same isomer in very high purity (>95%). It is possible that the small contamination by the *Z*-isomer may have been due to photolytic and or thermally induced isomerisation. Differentiation between *E*- and *Z*-isomers of compounds 32-36 was possible using ¹H NMR spectroscopic techniques and was in accordance with literature precedent.^{4d}

In a few cases the one-pot strategy provided some unexpected by-products. In addition to the desired *exo*-cyclic enones (+)-22 and (+)-24 (entries 5 and 10 respectively), more polar compounds were also isolated (15% yield in each case). After NMR spectroscopic and high resolution mass spectrometric analysis the compounds were assigned the structures of the tri-aryl species (+)-30 and (+)-31.

Previously, it has been reported that Lewis acid-catalysed *retro* Diels-Alder reactions involving *exo*-cyclic enones similar to **16**, **21–24** were achievable only with reaction times of between 1 and 24 h duration.¹² It was found that a

Scheme 4. Synthesis of cross-conjugated cyclopentadienone precursors.

2541

Table 1. Synthesis of some exo-cyclic enones by one-pot conjugateaddition/aldol condensation/dehydration

Entry	Substrate	Cuprate reagent	Aldehyde	Product (yield, %) ^a $(E/Z \text{ ratio})^{b}$
1	(+)- 5	Me ₂ CuLi	Me ₂ CHCHO	(+)- 16 (76) (100:0)
3	(-)-3 (+)-5	Oct ₂ CuLi	Me ₂ CHCHO Me ₂ CHCHO	(-)-10 (00) (100.0) (+)-21 (61) (100:0)
4 5	(-)-5 (+)-5	Oct ₂ CuL1 Me ₂ CuLi	Me ₂ CHCHO PhCHO	(-)-21 (54) (100:0) (+)-22 (64) (97:3)
6 7	(−)-5 (+)-5	Me ₂ CuLi Oct ₂ CuLi	PhCHO PhCHO	(-)- 22 (75) (92:8) (+)- 23 (57) (92:8)
8 9	(−)-5 (±)-5	Oct ₂ CuLi Me ₂ CuLi	PhCHO p-F.C ₆ H₄CHO	(-)- 23 (83) (99:2) (±)- 24 (83) (99:1)
10	(+)-5	Me ₂ CuLi	p-F.C ₆ H ₄ CHO	(+)-24 (55) (100:0)

^a Yield following purification by flash column chromatography.

^b Ratio determined by ¹H NMR spectroscopy of the crude reaction mixture.

considerable enhancement of the reaction rate was possible, for the *exo*-cyclic enones **16**, **21–24**, when the [4+2]-cycloreversion step was carried out in a microwave reactor (SmithCreator, ~ 20 W).

(+) -32 R'=Me; R ² =CHMe ₂	(-) -32 R'=Me; R ² =CHMe ₂
(+) -33 R ¹ =C ₈ H ₁₇ ; R ² =CHMe ₂	(-)- 33 R ¹ =C ₈ H ₁₇ ; R ² =CHMe ₂
(-)-34 R ¹ =Me; R ² =Ph	(+) -34 R ¹ =Me; R ² =Ph
(+) -35 R ¹ =C ₈ H ₁₇ ; R ² =Ph	(-)- 35 R ¹ =C ₈ H ₁₇ ; R ² =Ph
(-)- 36 R ¹ =Me; R ² = <i>p</i> -F.C ₆ H ₄	(+)- 36 R ¹ =Me; R ² = <i>p</i> -F.C ₆ H ₄

Thus microwave-mediated reactions of *exo*-cyclic enones **16**, **21–24** were performed in DCM in sealed glass vials at 60 °C with MeAlCl₂ as Lewis acid catalyst and an excess of maleic anhydride as a cyclopentadiene trap.¹³ In most cases, the reaction was stopped after 25 min. Continued irradiation eroded the yields of products **32–36** which were generally very respectable (Table 2). In contrast to earlier reports,¹² little significant change in the *E/Z* isomer ratios was observed.

Table 2. Synthesis of some optically active cross-conjugated cyclopenta-dienones 32-36

Entry	Substrate	Product (yield %) ^a (E/Z ratio) ^b
1	(1) 1((1) 22 ((2)* (09-2)
1	(+)-10	(+)- 32 (03)* (98:2)
2	(-)-16	(<i>-</i>)- 32 (83)* (97:3)
3	(+)-21	(+)- 33 (84)* (100:0)
4	(-)-21	(-)-33 (65)* (94:6)
5	(+)-22	(-)- 34 (74) (97:3)
6	(-)-22	(+)- 34 (69) (97:3)
7	(+)-23	(+)-35 (82)* (99:1)
8	(-)-23	(-)-35 (62)* (98:2)
9	(±)- 24	(±)- 36 (83) (96:4)
10	(+)-24	(-)-36 (91) (100:0)

 ^a Yield following purification by flash column chromatography and taking into account recovered starting material (10–20%) where indicated (*).
^b Estimated by ¹H NMR spectroscopy.

3. Conclusions

We have combined a one-pot three-component coupling procedure on racemic and enantioenriched substrate **5** with a facile microwave-mediated *retro* Diels-Alder reaction to give optically pure cross-conjugated cyclopentadienones in two steps. Significantly the initial alkylcuprate conjugate addition reaction proceeds with high diastereoselectivity and the condensation with very high *E*-selectivity; the overall yield for the whole process is 50% or greater in the vast majority of the cases studied.

4. Experimental

4.1. General

Starting materials were purchased from commercial sources and were used without further purification. ¹HNMR (400 MHz) and ¹³C NMR (100 MHz) spectra were recorded using a Bruker AMX400 spectrometer. ¹³C NMR assignments were made using DEPT experiments. Infra red spectroscopy was performed on a Perkin–Elmer Paragon 1000 FT1R machine. Optical rotation measurements were recorded using an Optical Activity, Polar 2001 polarimeter at 589 nm and are quoted in units of 10⁻¹ deg cm² g⁻¹. Flash column chromatography was performed using silica gel-ICN 32-63, 60 Å.

4.2. Baylis-Hillman reaction representative procedure

4.2.1. (±)-2-(1-Hydroxy-octyl)-3a,4,7,7a-tetrahydro-4,7methanoinden-1-one 7. Phenol (0.2 equiv.) and n-tributylphosphine (0.4 equiv.) was added to a stirring solution of enone 5 (1.0 g, 6.91 mmol) and n-octylaldehyde (1.5 equiv.) in anhydrous THF (6.2 cm³) at room temperature under nitrogen stream. After 5-8 days at this temperature, flash silica (4.5 g) was added and the solvent removed in vacuo to afford crude product, pre-absorbed on silica. Purification using flash column chromatography (SiO₂), eluting with nhexane/2-butanone, (9:1) afforded the allylic alcohol 7 (1.63 g, 86%) as a transparent pale yellow oil; $R_{\rm f} 0.24$ (SiO₂, *n*-hexane/diethyl ether, 2:1); $\delta_{\rm H}$ (400 MHz, CDCl₃) 7.10 (1H, d, J=2.6 Hz, H₃), 5.91 (1H, dd, J=5.6, 2.9 Hz, H_{5/6}), 5.79 (1H, m, H_{6/5}), 4.20 (1H, s, 2CH(OH) n-hep), 3.27 (2H, m), 2.91 (2H, m), 1.75 (1H, m), 1.75 (1H, d, J=8.5 Hz, 4-CHH-7), 1.62 (1H, d, J=8.5 Hz, 4-CHH-7), 1.26 (1H, $1CH(OH)(CH_2)_6Me)$, 0.87 (3H, t, J=6.7 Hz, s. 1CH(OH)(CH₂)₆Me); $\delta_{\rm C}$ (100 MHz, CDCl₃) 210.9 (s, C₁), 158.1 (d, C₃), 150.9 (s, C₂), 133.0 (d, C_{5/6}), 132.7 (C_{6/5}), 68.7 (2CH(OH) n-hep), 53.1 (t, 4-CH₂-7), 52.0 (d), 45.89, 45.5, 44.5, 36.6 (t, 2CH(OH)(CH₂)₆Me), 32.1, 29.7, 29.6, 25.8, 23.0, 14.4 (q, 2CH(OH)(CH₂)₆Me); m/z (CI/NH₃) 275 (MH⁺, 100%), 257 ([MH-H₂O]⁺, 97), 144 (29); (HRMS: found MH⁺, 275.2011. C₁₈H₂₇O₂⁺ requires 275.2018).

4.2.2. (±)-2-(1-Hydroxy-2-methylpropyl)-3a,4,7,7atetrahydro-4,7-methanoinden-1-one 6. (1.32 g, 87%), a transparent pale yellow oil; $R_{\rm f}$ 0.25 (SiO₂, *n*-hexane/2butanone, 4:1); $\delta_{\rm H}$ (400 MHz, CDCl₃) 7.07 (1H, d, J=2.5 Hz, H₃), 5.94 (1H, dd, J=5.5, 2.8 Hz, H_{5/6}), 5.80 (1H, dd, J=5.5, 3.0 Hz, H_{6/5}), 3.99 (1H, d, J=5.8 Hz, 2CH(OH) *i*-prop), 3.34 (1H, m), 3.22 (1H, m), 2.97 (1H, m), 2.88 (1H, t, J=4.8 Hz), 1.87–1.75 (1H, m), 1.64–1.57 (1H, m), 0.89 (3H, d, J=6.8 Hz, 2CH(OH)CHMeMe), 0.83 (3H, d, J=6.8 Hz, 2CH(OH)CHMeMe); $\delta_{\rm C}$ (100 MHz, CDCl₃) 211.1 (s, C₁), 159.5 (d, C₃), 149.3 (s, C₂), 133.2 (d, C_{5/6}), 133.0 (C_{6/5}), 74.9 (2CH(OH) *i*-prop), 53.2 (t, 4-CH₂–7), 52.0 (d), 46.1, 45.5, 44.6, 33.6, 19.3 (q, 2CH(OH)CH-MeMe), 17.9 (2CH(OH)CHMeMe); m/z (CI/NH₃) 219 (MH⁺, 100%), 201 ([MH–H₂O]⁺, 75), 137 (42.3); (HRMS: found MH⁺, 219.1393. C₁₄H₁₉O⁺₂ requires 219.1385).

4.2.3. (\pm) -2-(Cyclopropyl-hydroxy-methyl)-3a,4,7,7atetrahydro-4,7-methanoinden-1-one 8. (3.44 g, 93%), a transparent yellow oil; $R_{\rm f}$ 0.17 (SiO₂, *n*-hexane/2-butanone, 4:1); $\delta_{\rm H}$ (400 MHz, CDCl₃) 7.20 (1H, d, J=2.6 Hz, H₃), 5.92 (1H, dd, J=5.3, 2.7 Hz, H₆), 5.80 (1H, dd, J=5.3, 3.0 Hz, H₅), 3.67 (1H, d, J=8.1 Hz, 2CH(OH) cycloprop), 3.33 (1H, m, H_{3a}), 3.22 (1H, m, H₇), 3.12 (1H, br. s, 2CH(OH) cycloprop), 2.97 (1H, m, H₄), 2.89 (1H, t, J=5.12 Hz, H_{7a}), 1.75 (1H, dd, J=8.4, 1.4 Hz, 4-CHH-7), 1.62 (1H, d, J=8.4 Hz, 4-CHH-7), 1.07-0.94 (1H, m, 2CH(OH) cycloprop), 0.57-0.42 (2H, m, 2CH(OH) cycloprop), 0.38–0.33 (1H, m, 2CH(OH) cycloprop), 0.27–0.21 (1H, m, 2CH(OH) *cycloprop*); δ_C (100 MHz, CDCl₃) 210.9 (s, C₁), 158.4 (d, C₃), 150.3 (s, C₂), 132.9 (d, C₆), 132.7 (C₅), 72.2 (2CH(OH) cycloprop), 51.9 (C_{7a}), 45.9 (C_{3a}), 45.5 (C7), 44.4 (C4), 17.0 (2CH(OH) cycloprop), 3.5 (t, 2CH(OH) cycloprop), 2.5 (2CH(OH) cycloprop); m/z (CI/ NH₃) 234 ([MH+NH₃]⁺, 3.7%), 216 ([MH+NH₃-H₂O]⁺, 74.4), 199 (100); (HRMS: found MH+NH⁺₃, 234.1498. $C_{14}H_{20}NO_2^+$ requires 234.1494).

4.2.4. (±)-2-(1-Hydroxy-phenyl-methyl)-3a,4,7,7a-tetrahydro-4,7-methanoinden-1-one 9. (0.73 g, 89%), an offwhite crystalline solid; $R_{\rm f}$ 0.28 (SiO₂, *n*-hexane/diethyl ether, 1:1); ν_{max} (film)/cm⁻¹ 3355 (OH), 1664.9 (CO); δ_{H} (400 MHz, CDCl₃) 7.34-7.31 (5H, m, 2CH(OH)Ph), 6.94 (1H, d, J=1.9 Hz, H₃), 5.90 (1H, dd, J=5.6, 2.9 Hz, H_{5/6}), 5.76 (1H, dd, J=5.6, 3.0 Hz, $H_{6/5}$), 5.42 (1H, s, 2CH(OH)Ph), 3.45 (1H, s, 2CH(OH)Ph), 3.29 (1H, m, H_{3a}), 3.22 (1H, m, H_{4/7}), 2.93 (1H, m, H_{7/4}), 2.89 (1H, t, J=5.1 Hz, H_{7a}), 1.74 (1H, dt, J=8.5, 1.7 Hz, 4-CHH-7), 1.60 (1H, d, J=8.5 Hz, 4-CHH-7); δ_{C} (100 MHz, CDCl₃) 210.7 (s, C_1), 159.7 (d, C_3), 150.7 (s, C_2), 141.9 (2CH(OH)Ph), 133.0 (d, C₆), 132.9 (C₅), 128.8 (2d, 2CH(OH)*Ph*), 128.1 (d, 2CH(OH)*Ph*), 126.8 (2d, 2CH(OH)*Ph*), 70.6 (d, 2CH(OH)Ph), 53.1 (t, 4-CH₂-7), 52.0 (d, C_{3a}), 45.9 (C_{7a}), 45.6 (C₄), 44.5 (C₇); *m/z* (CI/NH₃) 504 (7.0%), 487 (8.8), 270 ([MH+NH₃]⁺, 7.9), 252 (44.8), 235 (100), 207 (35.7), 169 (13.8); (HRMS: found MH+NH⁺₃, 270.1498. C₁₇H₂₀NO⁺₂ requires 270.1501).

4.2.5. (±)-2-(1-Hydroxy-2-phenyl-ethyl)-3a,4,7,7a-tetrahydro-4,7-methano inden-1-one 10. (0.51 g, 56%), a yellow crystalline solid; R_f 0.24 (SiO₂, *n*-hexane/diethyl ether, 1:1); δ_H (250 MHz, CDCl₃) 7.27–7.16 (6H, m, 2CH(OH)CH₂Ph, H₃), 5.83 (1H, dd, *J*=5.5, 3.1 Hz, H_{5/6}), 5.66 (1H, dd, *J*=5.5, 3.1 Hz, H_{6/5}), 4.44 (1H, m, 2CH(OH)CH₂Ph), 4.30 (1H, br. s, 2CH(OH)CH₂Ph), 3.22 (1H, m, H_{3a}), 3.15 (1H, m, H_{4/7}), 2.96 (1H, dd, *J*=13.7, 4.1 Hz, 2CH(OH)CH/PHh), 2.90 (1H, m, H_{7/4}), 2.83 (1H, t, *J*=5.1 Hz, H_{7a}), 2.68 (1H, dd, *J*=13.7, 8.2 Hz, 2CH(OH)CH/PHh), 1.69 (1H, d, *J*=8.6 Hz, 4-CHH-7),

1.59 (1H, m, 4-CH*H*-7); $\delta_{\rm C}$ (100 MHz, CDCl₃) 213.9 (s, C₁), 163.4 (d, C₃), 155.9 (s), 143.4, 137.5 (d, C_{5/6}), 136.9 (C_{6/5}), 134.4 (2d, 2CH(OH)CH₂*Ph*), 132.8, 130.9 (d, 2CH(OH)CH₂*Ph*), 72.7 (2CH(OH)CH₂Ph), 57.3 (t, 4-CH₂-7), 56.5 (d), 56.5, 50.1, 49.7, 48.7, 47.2 (t, 1CH(OH)CH₂*Ph*); *m*/z (CI/NH₃) 387 (100%), 369 (58.1), 351 (18.0), 266 ([MH+NH₃-H₂O]⁺, 7.3), 249 ([MH-H₂O]⁺, 26.9), 194 (17.4), 91 (26.4); (HRMS: found MH⁺, 267.1391. C₁₈H₁₉O⁺₂ requires 267.1385).

4.3. Acetylation of Baylis-Hillman products representative procedure

4.3.1. (±)-Acetic acid 1-(1-oxo-3a,4,7,7a-tetrahydro-1H-4,7-methano-inden-2-yl)-octyl ester 12. Acetic anhydride (11 equiv.) was added to a solution of allylic alcohol 7 (0.25 g, 0.91 mmol) in freshly distilled pyridine (1.6 cm^3) and stirred at room temperature for 17 h under nitrogen atmosphere. Water (8 cm³) and ethyl acetate (8 cm³) were added, the aqueous layer separated and extracted further with ethyl acetate $(3 \times 8 \text{ cm}^3)$. The combined organic layers were washed with 10% NaHCO₃ solution (8 cm³), water (8 cm^3) , dried (MgSO₄) and solvent removed in vacuo to afford crude acetate. Purification using flash column chromatography (SiO₂), eluting with n-hexane/2-butanone (9:1) gave allylic acetate **12** (0.21 g, 72%) as a transparent amber oil; R_f 0.46 (SiO₂, *n*-hexane/2-butanone, 4:1); δ_H (400 MHz, CDCl₃) 7.11 (1H, d, J=2.5 Hz, H₃), 5.91 (1H, m, H_{5/6}), 5.71 (1H, m, H_{6/5}), 5.34 (1H, m, 2CH(OAc) n-hep), 3.31-3.28 (1H, m), 3.21 (1H, m), 2.94 (1H, m), 2.84 (1H, m), 2.03 (3H, s, 2CH(OCOMe) n-hep), 1.74-1.58 (4H, m, 2CH(OAc)(CH₂)₆Me), 1.24 (10H, m, 2CH(OAc)(CH₂)₆-Me), 0.86 (3H, m, 2CH(OAc)(CH₂)₆Me); $\delta_{\rm C}$ (100 MHz, CDCl₃) 207.5 (s, C₁), 169.9 (2CH(OCOMe) n-hep), 158.8 (d, C₃), 148.0 (s, C₂), 132.7 (d, C_{5/6}), 132.3 (C_{6/5}), 69.7 (2CH(OAc) n-hep), 52.5 (t, 4-CH₂-7), 53.0 (d), 45.5, 45.2, 44.2, 33.0 (t, 2CH(OAc)(CH₂)₆Me), 31.8, 29.2, 29.1, 25.2, 22.6, 21.1 (q, 2CH(OCOMe) *n*-hep), 14.1 $(2CH(OAc)(CH_2)_6Me); m/z (CI/NH_3) 334 ([MH+NH_3]^+,$ 30.7%), 317 (MH⁺, 93.4), 274 (3.3), 257 (100), 144 (21.9); (HRMS: found MH⁺, 317.2116. $C_{20}H_{29}O_3^+$ requires 317.2117).

4.3.2. (±)-Acetic acid 2-methyl-1-(1-oxo-3a,4,7,7a-tetrahydro-1*H*-4,7-methano-inden-2-yl)-propyl ester 11. (0.25 g, 83%), a transparent pale yellow oil; $R_{\rm f}$ 0.49 (SiO₂, *n*-hexane/2-butanone, 4:1); ν_{max} (film)/cm⁻¹ 3061, 2966, 2934, 2873, 1738, 1703, 1627; δ_H (400 MHz, CDCl₃) 7.11 (1H, d, J=2.5 Hz, H₃), 5.91 (1H, m, H_{5/6}), 5.70 (1H, m, H_{6/5}), 5.15 (1H, d, J=6.3 Hz, 2CH(OAc) *i*-prop), 3.31 (1H, m), 3.22 (1H, m), 2.94 (1H, m), 2.85 (1H, m), 2.12 (1H, m, 2CH(OAc)CHMe₂), 2.03 (3H, s, 2CH(OAc) *i*-prop), 1.75 (1H, m, 4-CHH-7), 1.60 (1H, m, 4-CHH-7), 0.84 (3H, s, 2CH(OH)CHMeMe), 0.83 (3H, 2CH(OH)CHMeMe); δ_{C} (100 MHz, CDCl₃) 207.5 (s, C₁), 170.0 (2CH(OCOMe) *i*-prop), 160.0 (d, C₃), 147.1 (s, C₂), 132.9 (d, C_{5/6}), 132.4 (C_{6/5}), 74.1 (2CH(OAc) *i*-prop), 52.5 (t, 4-CH₂-7), 51.6 (d), 45.6, 45.2, 44.2, 30.3 (2CH(OAc)CHMe₂), 21.0 (q, 2CH(OCOMe) i-prop), 18.7 (2CH(OH)CHMeMe), 17.5 (2CH(OH)CHMeMe); m/z (CI/NH₃) 278 ([MH+NH₃]⁺, 16.1%), 261 (MH+, 71.4), 201 (100); (HRMS: found MH+ 261.1485. C₁₆H₂₁O₃⁺ requires 261.1491); Found: C, 73.7; H, 7.8%, C₁₆H₂₀O₃ requires C, 73.8; H, 7.7%.

4.3.3. (±)-Acetic acid cyclopropyl-(1-oxo-3a,4,7,7a-tetrahydro-1H-4,7-methano-inden-2-yl)-methyl ester 13. (4.56 g, 97%), a transparent pale brown oil; $R_{\rm f}$ 0.35 (SiO₂, *n*-hexane/Et₂O, 1:1); $\delta_{\rm H}$ (400 MHz, CDCl₃) 7.19 (1H, d, J=2.6 Hz, H₃), 5.90 (1H, dd, J=5.6, 2.9 Hz, H_{5/6}), 5.72 (1H, dd, J=5.6, 3.0 Hz, H_{6/5}), 4.78 (1H, d, J=8.9 Hz, 2CH(OAc) cycloprop), 3.31 (1H, m), 3.22 (1H, m), 2.96 (1H, m), 2.86 (1H, t, J=5.0 Hz), 2.03 (3H, s, 2CH(OCOMe) cycloprop), 1.74 (1H, dt, J=8.4, 1.7 Hz, 4-CHH-7), 1.60 (1H, d, J=8.4 Hz, 4-CHH-7), 1.24-1.16 (1H, m, 2CH(OAc) cvcloprop), 0.55–0.44 (2H, m, 2CH(OAc) cvcloprop), 0.39–0.28 (2H, m, 2CH(OAc) cycloprop); $\delta_{\rm C}$ (100 MHz, CDCl₃) 207.7 (s, C₁), 170.3 (2CH(OCOMe) cycloprop), 159.4 (C₂), 148.0 (d, C₃), 133.0 (C_{5/6}), 132.6 (C_{6/5}), 73.1 (t, 2CH(OAc) cycloprop), 52.8 (4-CH₂-7), 51.7 (d), 45.9, 45.6, 44.9, 21.5 (2CH(OAc) cycloprop), 14.6 (q, 2CH(OCOMe) cycloprop), 4.3 (t, 2CH(OAc) cycloprop), 2.9 (2CH(OAc) cycloprop); m/z (CI/NH₃) 276 ([MH+NH₃]⁺, 11.0%), 259 (MH⁺, 13.3), 216 (100), 199 (94.5), 164 (16.4), 147 (20.3), 135 (9.6); (HRMS: found MH⁺, 259.1329. C₁₆H₁₈O₃⁺ requires 259.1334).

4.3.4. (\pm) -Acetic acid (1-0x0-3a,4,7,7a-tetrahydro-1H-4,7-methano-inden-2-yl)-phenyl-methyl ester 14. (0.74 g, 93%), an off-white crystalline solid; $R_{\rm f}$ 0.34 (SiO₂, *n*-hexane/diethyl ether, 1:1); $\delta_{\rm H}$ (400 MHz, CDCl₃) 7.33-7.22 (5H, m, 2CH(OCOMe)Ph), 7.19 (1H, m, H₃), 6.38 (1H, dd, *J*=5.2, 2.9 Hz, H_{5/6}), 5.91 (1H, dd, *J*=5.2, 2.5 Hz, H_{6/5}), 3.30-3.27 (1H, m, H_{3a/7a}), 3.18 (1H, m, H_{4/7}), 2.95 (1H, m, H_{7/4}), 2.80 (1H, t, J=4.9 Hz, H_{7a/3a}), 2.05 (3H, s, 2CH(OCOMe)Ph), 1.71 (1H, d, J=8.4 Hz, 4-CHH-7), 1.56 (1H, d, *J*=8.4 Hz, 4-CH*H*-7); δ_C (100 MHz, CDCl₃) 207.0 (s, C₁), 169.8 (2CH(OCOMe)Ph), 159.1 (d, C₃), 148.4 (s, C₂), 138.6 (2CH(OCOMe)Ph), 133.0 (d, C_{5/6}), 132.7 (C_{6/5}), 128.8 (2d, 2CH(OCOMe)Ph), 128.5, 127.4 (d, 2CH(OCOMe)Ph), 70.7 (2CH(OCOMe)Ph), 52.9 (t, 4-CH₂-7), 51.8 (d, C_{3a/7a}), 46.0 (C_{4/7}), 45.6 (C_{7/4}), 44.6 (C_{7a/3a}), 21.4 (q, 2CH(OCO-*Me*)Ph); m/z (ES⁺) 413 (5.0%), 408 (5.0), 333 ([M+K]⁺, 5.6), 317 ([M+Na]⁺, 100), 301 (29.4), 251 (36.9); (HRMS: found M+Na⁺, 317.1160. $C_{19}H_{18}O_3^{23}Na$ requires 317.1154); Found: C, 77.5; H, 6.2%, C19H18O3 requires C, 77.5; H, 6.2%.

4.3.5. (±)-Acetic acid-1-(1-oxo-3a,4,7,7a-tetrahydro-1H-4,7-methano-inden-2-yl)-2-phenyl-ethyl ester 15. (0.27 g, 47%), a transparent pale yellow oil; $R_f 0.22$ (SiO₂, *n*-hexane/ diethyl ether, 2:1); v_{max} (film)/cm⁻¹ 3469, 3062, 3029, 2979, 2936, 2869, 1742, 1698; $\delta_{\rm H}$ (400 MHz, CDCl_3) 7.27– 7.12 (5H, m, 2CH(OAc)CH₂Ph), 7.01 (1H, d, J=2.4 Hz, H_3), 5.86 (1H, dd, J=5.6, 2.8 Hz, $H_{5/6}$), 5.61 (1H, m, 2CH(OAc)CH₂Ph), 5.54 (1H, dd, J=5.6, 2.9 Hz, H_{6/5}), 3.24-3.20 (2H, m), 3.10 (1H, dd, J=14.0, 5.5 Hz, 2CH(OAc)CHHPh), 2.92 (1H, m, 2CH(OAc)CHHPh), 2.88 (1H, m), 2.84 (1H, t, J=5.1 Hz), 1.98 (3H, s, t)2CH(OCOMe)CH₂Ph), 1.70 (1H, dt, J=8.4, 1.6 Hz, 4-CHH-7), 1.56 (1H, d, J=8.4 Hz, 4-CHH-7); $\delta_{\rm C}$ (100 MHz, CDCl₃) 207.8 (s, C₁), 170.0 (2CH(OCOMe)Ph), 160.1 (d, C₃), 147.2 (s, C₂), 137.3 (2CH(OCOMe)CH₂Ph), 133.0 (d, C_{5/6}), 132.6 (C_{6/5}), 129.9 (2d, 2CH(OCOMe)CH₂Ph), 128.5, 126.9 (d, 2CH(OCOMe)Ph), 70.5 (2CH(OCOMe)CH₂Ph), 52.8 (t, 4- CH_2 -7), 52.0 (d, $C_{3a/7a}$), 45.9 ($C_{4/7}$), 45.5 ($C_{7/4}$), 44.4 ($C_{7a/3a}$), 39.3 (t, 2CH(OAc)CH₂Ph), 21.3 (q, 2CH(OCOMe)CH₂Ph); *m*/*z* (CI/NH₃) 326 ([MH+NH₃]⁺, 15.1%), 309 ([MH]⁺, 48.8), 249 (100); (HRMS: found MH⁺, 309.1491. C₂₀H₂₁O₃⁺ requires 309.1491) as well as its elimination product (0.23 g, 48%) as white crystalline solid; $R_{\rm f}$ 0.54 (SiO₂, *n*-hexane/ diethyl ether, 1:1); ν_{max} (film)/cm⁻¹ 3061, 3028, 2978, 2940, 2869, 1748, 1697, 910, 734; $\delta_{\rm H}$ (400 MHz, CDCl₃) 7.45–7.30 (2H, m, 2CHCHPh), 7.29-7.16 (5H, m, H₃, 2CHCHPh), 6.65 (1H, d, J=16.4 Hz, 2CHCHPh), 5.94 (1H, dd, J=5.6, 3.0 Hz, $H_{5/6}$), 5.80 (1H, dd, J=5.6, 2.8 Hz, $H_{6/5}$), 3.33 (1H, m, $H_{3a/7a}$), 3.26 (1H, m, H_{4/7}), 2.98 (1H, m, H_{7/4}), 2.94 (1H, t, J=5.1 Hz, H_{7a/3a}), 1.76 (1H, dt, J=8.4, 1.7 Hz, 4-CHH-7), 1.62 (1H, d, J=8.4 Hz, 4-CHH-7); $\delta_{\rm C}$ (100 MHz, CDCl₃) 208.7 (CO, C₁), 158.8 (CH, C₃), 144.0 (R₄C, C₂), 137.6 (2CHCHPh), 133.1 (CH), 133.0, 128.9, 128.3, 127.0, 118.7 (2CHCHPh), 53.1 (R₂CH₂, 4-CH₂-7), 52.4 (R₃CH), 45.9 (2R₃CH), 45.1; *m/z* (CI/ NH₃) 266 ([MH+NH₃]⁺, 22.9%), 249 ([MH]⁺, 100); (HRMS: found MH⁺, 249.1275. C₁₈H₁₇O⁺ requires 249.1279).

4.4. Alkylcuprate addition and acetate elimination representative procedure

4.4.1. (\pm) -2-(E)-Octylidene-3-methyl-2,3,3a,4,7,7a-hexahydro-4,7-methanoinden-1-one 18 and (\pm) -2-(1-methyloctyl)-3-methyl-2,3,3a,4,7,7a-hexahydro-4,7-methanoinden-1-one 25. 1.4 M Methyllithium in diethyl ether (3.3 equiv.) was added to a suspension of anhydrous copper (I) iodide (1.7 equiv.) in diethyl ether (1.6 cm³) at -78 °C under nitrogen atmosphere. The reaction mixture was allowed to warm to -40 °C and stirred for 30 min. The alkylcuprate reagent was added dropwise to a stirring solution of acetate 12 (53 mg, 0.17 mmol) in anhydrous diethyl ether (0.17 cm³) at -78 °C and the reaction allowed to warm to room temperature. After 12.5 h at room temperature, saturated aqueous NH₄Cl solution (0.75 cm³) was added and the reaction mixture extracted with diethyl ether $(3 \times 0.75 \text{ cm}^3)$. The combined organic layers were dried (MgSO₄) and the solvent removed in vacuo to afford crude product. Preparative thin layer chromatography (SiO_2) eluting with *n*-hexane/2-butanone (5:1) gave the methylated adduct 18 (15.8 mg, 34%) as a pale yellow transparent oil; R_f 0.56 (SiO₂, *n*-hexane/2-butanone, 4:1); $\delta_{\rm H}$ (400 MHz, CDCl₃) 6.94 (1H, d, J=2.7 Hz, 2CHn-hep), 5.87 (1H, dd, J=5.5, 2.7 Hz, H_{5/6}), 5.73 (1H, dd, J=5.5, 2.9 Hz, H_{6/5}), 3.25-3.22 (1H, m), 3.20 (1H, m), 2.92 (1H, m), 2.89 (1H, t, J=5.1 Hz), 2.38 (1H, m, H₃), 1.74-1.71 (1H, dt, J=8.3, 1.8 Hz, 4-CHH-7), 1.61–1.59 (1H, m, 4-CHH-7), 1.41–1.09 (12H, m, 2CH(CH₂)₆Me), 0.98 (3H, d, *J*=6.9 Hz, 3*Me*), 0.87 (3H, t, *J*=6.8 Hz, 2CH(CH₂)₃*Me*); δ_C (100 MHz, CDCl₃) 209.6 (s, C₁), 155.9 (d, 2*C*H *n*-hep), 154.7 (s, C₂), 132.5 (d, C_{5/6}), 132.4 (C_{6/5}), 52.6 (t, 4-CH₂-7), 51.1 (d), 49.0, 45.2, 44.2, 35.9 (t, 2CH(CH₂)₆Me), 31.9, 31.8, 29.6, 29.3, 27.1, 22.1, 19.6 (q, 3Me), 14.1 $(2CH(CH_2)_6Me); m/z$ (CI/NH₃) 303 (0.5%), 290 $([MH+NH_3]^+, 0.9), 273 (MH^+, 100), 173 (26.4);$ (HRMS: found MH⁺, 273.2224. $C_{19}H_{19}O^+$ requires 273.2218) and the bis-alkylated adduct **25** (13.9 mg, 28%) as a pale yellow transparent oil; $R_{\rm f}$ 0.66 (SiO₂, *n*-hexane/2butanone, 4:1); $\delta_{\rm H}$ (400 MHz, CDCl₃) 6.14 (1H, dd, J=5.6, 3.0 Hz, H_{5/6}), 6.04 (1H, dd, J=5.6, 3.0 Hz, H_{6/5}), 3.13 (1H, m), 3.03 (1H, m), 2.97-2.92 (1H, m), 2.48-2.43 (1H, m), 1.95 (1H, dt, J=11.8, 2.8 Hz), 1.67-1.55 (3H, m), 1.40 (1H, d, J=8.1 Hz), 1.29-1.20 (12H, m, 2CHMe(CH₂)₆Me), 1.17 (3H, d, J=6.6 Hz, 2CHMen-hep), 0.87 (3H, t, J=6.6 Hz, 2CHMe(CH₂)₃Me), 0.83 (3H, d, J=6.8 Hz, 3Me); $\delta_{\rm C}$

(100 MHz, CDCl₃) 218.3 (s, C₁), 137.1 (d, C_{5/6}), 135.7 (C_{6/5}), 65.1 (d), 55.1, 52.3 (t, 4-CH₂-7), 48.0 (d), 45.5, 44.7, 35.7, 34.5, 31.9 (t, 2CH(CH₂)₆Me), 31.6, 29.8, 29.4, 28.0, 22.7, 21.8 (q), 16.8, 14.1; m/z (CI/NH₃) 306 ([MH+NH₃]⁺, 20.7%), 289 (MH⁺, 6.3), 240 (37.6), 223 (100), 96 (20), 60 (15.5); (HRMS: found MH+NH₃⁺, 306.2799. C₂₀H₃₆NO⁺ requires 306.2797).

4.4.2. (\pm) -2-(2-(E)-Methylpropylidene)-3-methyl-2,3,3a,4,7,7a-hexahydro-4,7-methano-inden-1-one 16 (50.7 mg, 57%), a pale yellow transparent oil; $R_{\rm f}$ 0.50 (SiO₂, *n*-hexane/2-butanone, 4:1); $\delta_{\rm H}$ (400 MHz, CDCl₃) 6.06 (1H, dd, J=10.5, 2.1 Hz, 2CHi-prop), 5.95 (2H, m, H₅, H₆), 3.23 (1H, m), 3.06 (1H, m), 3.00 (1H, m), 2.52 (1H, m), 1.47 (1H, dt, J=8.3, 1.7 Hz, 4-CHH-7), 1.37 (1H, d, J=8.3 Hz, 4-CHH-7), 1.11 (3H, d, J=7.3 Hz, 3Me), 1.00 (3H, d, J=7.3 Hz, 2CHCHMeMe), 0.95 (3H, d, J=6.6 Hz, 2CHCHMeMe); δ_C (100 MHz, CDCl₃) 209.7 (s, C₁), 143.2 (C_2) , 142.8 (d), 136.1, 133.0, 53.3 (d),51.4 (t, 4-CH₂-7), 47.4 (d), 47.1, 46.9, 35.0, 28.5, 23.4 (q, 3Me), 22.1 (2CHCHMeMe), 21.9 (2CHCHMeMe); m/z (CI/NH₃) 234 $([MH+NH_3]^+, 3.1\%), 217 (MH^+, 16.8), 168 (23.7), 151$ (100); (HRMS: found MH⁺, 217.1595. C₁₅H₂₁O⁺ requires 217.1592).

4.4.3. (\pm) -2-(2-(E)-Methylpropylidene)-3-butyl-2,3,3a,4,7,7a-hexahydro-4,7-methano-inden-1-one 17. (28.2 mg, 59%) as a transparent pale yellow oil; $R_{\rm f}$ 0.54 (SiO₂, *n*-hexane/2-butanone, 4:1); $\delta_{\rm H}$ (400 MHz, CDCl₃) 6.07 (1H, dd, J=10.7, 2.1 Hz, 2CHi-prop), 5.95 (2H, m, H₅, H₆), 3.23 (1H, m), 3.00 (1H, m), 2.96 (1H, m), 2.51 (1H, m), 2.43-2.34 (2H, m), 1.41-1.31 (8H, m, 4-CH₂-7 and 3(CH₂)₃Me), 1.00 (3H, d, J=6.6 Hz, 2CH(OH)CHMeMe), 0.95 (3H, d, J=6.5 Hz, 2CH(OH)CHMeMe), 0.90 (3H, t, J=6.6 Hz, $3(CH_2)_3Me$; δ_C (100 MHz, CDCl₃) 210.4 (s, C₁), 143.3 (d, 2*C*H *i*-prop), 142.5 (s, C₂), 136.3 (d, C_{5/6}), 133.8 (C_{6/5}), 54.2, 51.9 (t, 4-CH₂-7), 47.9 (d), 44.6, 40.8, 37.4 (t), 29.4, 29.0 (d), 23.3 (t), 22.3 (2q, 2CHMe₂), 14.5 (q, 3(CH₂)₃Me); m/z (CI/NH₃) 278 (3.6%), 259 (MH⁺, 11.3), 210 (25.2), 193 (100); (HRMS: found MH+, 259.2060. $C_{18}H_{27}O^+$ requires 259.2062).

4.5. Alkyl cyanocuprate addition and elimination representative procedure

4.5.1. (±)-2-(*E*)-Octylidene-3-butyl-2,3,3a,4,7,7a-hexahydro-4,7-methano-inden-1-one 19 and (\pm) -2-(1-butyloctyl)-3-butyl-2,3,3a,4,7,7a-hexahydro-4,7-methanoinden-1-one 26. 2.5 M n-Butyllithium in diethyl ether (1.2 equiv.) was added to a suspension of anhydrous copper (I) cyanide (1.2 equiv.) in diethyl ether (3.1 cm³) at -78° C under nitrogen atmosphere. The reaction mixture was allowed to warm to -40 °C and stirred for 40 min. The alkyl cyanocuprate reagent was added dropwise to a stirring solution of acetate 12 (0.5 g, 1.58 mmol) in anhydrous diethyl ether (1.6 cm³) at -78 °C. After 45 min at this temperature, saturated aqueous NH_4Cl solution (2.5 cm³) was added and the reaction mixture extracted with diethyl ether $(3 \times 4 \text{ cm}^3)$. The combined organic layers were dried (MgSO₄) and the solvent removed in vacuo to afford a yellow opalescent oil. Purification by flash column chromatography (SiO₂), eluting with n-hexane/diethyl ether (9:1 and 4:1), gave an inseparable mixture (9:1) of the

3-butylated adduct 19 and its exo-butylated regioisomer 27 (0.21 g, 42%) as a transparent pale yellow oil; $R_{\rm f} 0.43$ (SiO₂, *n*-hexane/diethyl ether, 4:1); ν_{max} (film)/cm⁻¹ 2958, 2927, 2857, 1712, 1639; $\delta_{\rm H}$ (400 MHz, CDCl₃) 6.31 (1H, m, 2CHn-hep), 5.98 (2H, m, H₅, H₆), 3.26 (1H, m), 3.04 (1H, m), 2.99 (1H, m), 2.55 (1H, m), 2.43 (1H, m), 2.08 (2H, m), 1.51 (1H, m, 4-CHH-7), 1.43 (1H, d, J=8.1 Hz, 4-CHH-7), 1.39-1.25 (15H, m, 2CH(CH₂)₆Me, 3(CH₂)₃Me), 0.95-0.89 (6H, m, 2CH(CH₂)₆Me, 3(CH₂)₃Me); δ_C (100 MHz, CDCl₃) 209.8 (s, C₁), 143.9 (C₂), 137.6 (d, 2CH n-hep), 136.2 (C_{5/6}), 133.9 (C_{6/5}), 54.2, 51.9 (t, 4-CH₂-7), 47.9 (d), 47.8, 44.6, 40.8, 36.8 (t), 32.2, 29.8, 29.7, 29.5, 29.4, 29.0, 23.3, 23.0, 14.5 (q, 2CH(CH)₆Me), 14.5 (3(CH₂)₃Me); m/z (CI/NH₃) 315 (MH⁺, 19.4%), 249 (100); (HRMS: found MH⁺, 315.2681. $C_{22}H_{35}O^+$ requires 315.2688) as well as the bis-alkylated adduct 26 (38.3 mg, 7%) as a transparent pale yellow oil; $R_f 0.59$ (SiO₂, *n*-hexane/diethyl ether, 4:1); $\nu_{\rm max}$ (film)/cm⁻¹ 2924, 2854, 1733, 1466, 1229, 731; $\delta_{\rm H}$ (400 MHz, CDCl₃) 6.13 (1H, dd, J=5.5, 2.9 Hz, H_{5/6}), 6.04 (1H, dd, J=5.5, 2.9 Hz, H_{6/5}), 3.13 (1H, m), 2.99 (1H, m), 2.97-2.92 (1H, m), 2.54-2.49 (1H, m), 2.15 (1H, dt, J=11.8, 2.4 Hz), 1.67-1.61 (1H, m), 1.59-1.50 (3H, m), 1.45–1.09 (24H, m), 0.95 (3H, t, *J*=6.8 Hz), 0.89 (6H, m); $\delta_{\rm C}$ (75.5 MHz, CDCl₃) 218.9 (s, C₁), 137.3 (d, C_{5/6}), 135.8 (C_{6/5}), 61.0, 55.1, 52.59 (t, 4-CH₂-7), 47.4 (d), 46.2, 44.5, 40.5, 36.9, 36.65 (t), 32.2, 31.8, 31.5, 30.5, 29.9, 29.8, 29.2, 28.1, 22.8, 22.7, 14.0 (q), 13.9, 13.89; m/z (CI/NH₃) 390 (MH+NH₃⁺, 18.2%), 373 (MH⁺, 14.2), 324 (21.0), 138 (26.2); (HRMS: found MH⁺, 373.3462. C₂₆H₄₅O⁺ requires 373.3470).

4.5.2. (\pm) -2-(E)-Cyclopropylmethylene-3-methyl-2,3,3a,4,7,7a-hexahydro-4,7-methano-inden-1-one 20 and 2-(1-cyclopropyl-ethyl)-3a,4,7,7a-tetrahydro-4,7methano-inden-1-one 28. Methylated enone 20 (0.25 g, 61%), a pale yellow transparent oil; $R_f 0.36$ (SiO₂, *n*-hexane/ Et₂O, 2:1); $\delta_{\rm H}$ (400 MHz, CDCl₃) 6.02 (1H, dd, J=5.7, 3.0 Hz, H₆), 5.96 (1H, dd, J=5.7, 2.9 Hz, H₅), 5.71 (1H, dd, J=11.0, 2.2 Hz, 2CH cycloprop), 3.23 (1H, m, H₄), 3.08 (1H, m, H₇), 3.01 (1H, m, H_{3a}), 2.61 (1H, m, H₃), 2.43 (1H, m, H_{7a}), 1.48 (1H, dt, J=8.3, 1.8 Hz, 4-CHH-7), 1.44-1.36 (2H, m, 4-CHH-7, 2CH cycloprop), 1.20 (3H, d, J=7.3 Hz, 3Me), 0.99-0.90 (2H, m, 2CH cycloprop), 0.63-0.58 (2H, m, 2CH cycloprop); δ_{C} (100 MHz, CDCl₃) 208.1 (s, C₁), 143.6 (C₂), 142.3 (d, 2CH cycloprop), 136.0 (C₅), 133.5 (C₆), 53.8 (d, C_{3a}), 51.4 (t, 4-CH₂-7), 47.2 (d, C₄), 46.9 (C₇), 46.9 (C_{7a}), 35.2 (C₃), 22.3 (q, 3Me), 12.3 (d, 2CH cycloprop), 9.5 (t, 2CH cycloprop), 8.8 (2CH cycloprop); m/z (CI/NH₃) 429 (2.4%), 363 (4.7), 232 ([MH+NH₃]⁺, 1.3), 215 (MH⁺, 34.6), 149 (100); (HRMS: found MH⁺, 215.1441. C₁₅H₁₉O⁺₃ requires 215.1436); and its regioisomer 28 (77.3 mg, 19%) as a pale yellow transparent oil; $R_{\rm f}$ 0.49 (SiO₂, *n*-hexane/diethyl ether, 2:1); $\nu_{\rm max}$ (film)/ cm^{-1} 3062, 2962, 2931, 2870, 1698, 1621; $\delta_{\rm H}$ (400 MHz, CDCl₃) 7.04 (1H, d, J=2.6 Hz, H₃), 5.84 (1H, dd, J=5.5, 2.9 Hz, H_{5/6}), 5.72 (1H, dd, J=5.5, 2.9 Hz, H_{6/5}), 3.23 (1H, m), 3.18 (1H, m), 2.90 (1H, m), 2.79 (1H, t, J=5.1 Hz), 1.71 (1H, d, J=8.4 Hz, 4-CHH-7), 1.58 (1H, d, J=8.4 Hz, J=8.4 Hz)4-CHH-7), 1.05 (3H, d, J=7.0 Hz, 2CHCHMe cycloprop), 0.66 (1H, m, 2CHCHMe cycloprop), 0.39 (1H, m), 0.20 (1H, m), 0.03-(-0.02) (2H, m); *m*/*z* (CI/NH₃) 232 ([MH+NH₃]⁺, 0.6%), 215 (MH⁺, 100); (HRMS: found MH⁺, 215.1441. C₁₅H₁₉O⁺ requires 215.1436).

2546

4.6. Alkyl cuprate addition/aldol condensation/ dehydration representative procedure

4.6.1. (+)-2-(E)-Isobutylidene)-3(S)-methyl-2,3,3a,4,7,7a-hexahydro-4,7-methanoinden-1-one (+)-**16.** 1.6 M Methyl lithium in diethyl ether (2.4 equiv.) was added to a stirring suspension of copper (I) iodide (1.2 equiv.) in anhydrous diethyl ether (6 cm³) at -78 °C under nitrogen stream. After 3.0 h stirring at this temperature, a solution of (+)-enone (+)-5 (0.2 g, 0.37 mmol) in diethyl ether (3 cm³) was added dropwise over 5 min at -78 °C and stirred for 1.5 h. Whereupon, a solution of freshly distilled isobutyraldehyde (3.0 equiv.) was added, the reaction mixture stirred at -78 °C for 2 h and then allowed to warm to 0 °C overnight. The reaction was quenched with saturated aqueous NH₄Cl (9 cm³), aqueous ammonia (2-3 drops) added and the reaction mixture extracted with diethyl ether $(3 \times 15 \text{ cm}^3)$. The combined organic layers were washed with saturated aqueous NaCl $(3 \times 7 \text{ cm}^3)$, dried (MgSO₄) and the solvent removed in vacuo to afford crude enone as a dark green transparent oil. Purification using flash column chromatography (SiO_2) , eluting with *n*-hexane/acetone, (38:1) afforded the (+)-16 (0.23 g, 76%) as a transparent pale yellow oil; $R_{\rm f}$ 0.50 (SiO₂, *n*-hexane/acetone, 4:1); $[\alpha]_{\rm D}^{24}$ 2.89 (*c* 2.27 CHCl₃); $\delta_{\rm H}$ (400 MHz, CD₂Cl₂) 5.91 (1H, d, *J*=2.1 Hz, 2C*Hi*-prop), 5.88 (1H, m, H₆), 5.81 (1H, dd, J=5.7, 2.9 Hz, H₅), 3.08 (1H, m, H₄), 2.97 (1H, br. s, H₇), 2.87 (1H, dd, J=8.8, 4.8 Hz, H_{3a}), 2.47-2.41 (1H, m, H₃), 2.39-2.29 (2H, m, H_{7a}, 2CHCHMe₂), 1.36 (1H, dt, J=8.1, 1.8 Hz, 4-CHH-7), 1.29 (1H, d, J=8.1, 1.4 Hz, 4-CHH-7), 1.02 (3H, d, J=7.2 Hz, 3Me), 0.91 (3H, d, J=6.7 Hz, 2CHCHMeMe), 0.87 (3H, d, J=6.5 Hz, 2CHCHMeMe); $\delta_{\rm C}$ (100 MHz, CD₂Cl₂) 209.5 (s, C₁), 144.2 (C₂), 142.9 (d, 2*C*H *i*-prop), $136.6 (C_5), 134.2 (C_6), 54.2 (C_{3a}), 52.0 (t, 4-CH_2-7), 48.1 (d, 136.6 (C_5)), 134.2 (C_6), 54.2 (C_{3a}), 52.0 (t, 2000), 52.0 (t, 200$ C₄), 47.9 (C₇), 47.6 (2CHCHMe₂), 35.7 (C₃), 29.1 (C_{7a}), 23.9 (q, 3Me), 22.6 (2CHCHMeMe), 22.4 (2CHCHMeMe); m/z (CI/NH₃) 234 ([MH+NH₃]⁺, 2.6%), 217 (MH⁺, 8.9), 168 ($[MH+NH_3-C_5H_6]^+$, 15.3), 151 ($[MH-C_5H_6]^+$, 100.0), 66 (C₅H₆, 5.8); (HRMS: found MH⁺, 217.1592. $C_{15}H_{21}O^+$ requires 217.1597).

4.6.2. (-)-2-(E)-Isobutylidene)-3(R)-methyl-2,3,3a,4,7,7a-hexahydro-4,7-methanoinden-1-one (-)-16. (0.14 g, 60%), a transparent pale brown oil; $R_{\rm f}$ 0.55 (SiO₂, *n*-hexane/acetone, 4:1); $[\alpha]_D^{22} = -3.13$ (c 6.90) CHCl₃); $\delta_{\rm H}$ (400 MHz, CD₂Cl₂) 6.03 (1H, d, J=2.1 Hz, 2CHi-prop), 6.00 (1H, m, H₆), 5.93 (1H, dd, J=5.6, 2.8 Hz, H₅), 3.20 (1H, m, H₄), 3.08 (1H, m, H₇), 2.98 (1H, dd, J=8.6, 4.8 Hz, H_{3a}), 2.55 (1H, m, H₃), 2.51-2.40 (2H, m, H_{7a}, 2CHCHMe₂), 1.47 (1H, dt, J=8.2, 1.6 Hz, 4-CHH-7), 1.40 (1H, d, J=8.2 Hz, 4-CHH-7), 1.14 (3H, d, J=7.3 Hz, 3Me), 1.03 (3H, d, J=6.7 Hz, 2CHCHMeMe), 0.95 (3H, d, J=6.7 Hz, 2CHCHMeMe); $\delta_{\rm C}$ (100 MHz, CD₂Cl₂) 209.5 (s, C₁), 144.2 (C₂), 142.8 (d, 2*C*H *i*-prop), 136.6 (C₅), 134.2 (C₆), 54.2 (C_{3a}), 52.0 (t, 4-CH₂-7), 48.1 (d, C₄), 47.9 (C₇), 47.6 (2CHCHMe₂), (q, 35.7 $(C_3),$ 29.1 $(C_{7a}), 23.9$ 3Me), 22.6(2CHCHMeMe), 22.4 (2CHCHMeMe); m/z (CI/NH₃) 234 ($[MH+NH_3]^+$, 1.0%), 217 (MH^+ , 5.4), 168 ($[MH+NH_3-C_5H_6]^+$, 6.7), 151 ($[MH-C_5H_6]^+$, 100), 91 (6.7), 66 (C₅H₆, 13.7); (HRMS: found MH⁺, 217.1602. $C_{15}H_{21}O^+$ requires 217.1592).

4.6.3. (+)-2-(E)-Isobutylidene-3(S)-octyl-2,3,3a,4,7,7ahexahydro-4,7-methano-inden-1-one (+)-21. (0.26 g, 61%) as a very pale yellow transparent oil; $R_{\rm f}$ 0.38 (SiO₂, *n*-hexane/ethyl acetate, 9:1); $[\alpha]_{D}^{21}$ 2.39 (*c* 8.49 CHCl₃); δ_{H} (400 MHz, CDCl₃) 6.07 (1H, dd, J=10.7, 2.1 Hz, 2CHiprop), 5.97 (1H, d, J=5.6, 3.0 Hz, H_{5/6}), 5.93 (1H, dd, J=5.6, 2.9 Hz, H_{6/5}), 3.32 (1H, m, H_{4/7}), 3.01 (1H, br. s, H_{7/} ₄), 2.96 (1H, dd, J=8.7, 4.8 Hz, $H_{3a/7a}$), 2.51 (1H, ddd, $J=8.7, 4.1, 1.4 \text{ Hz}, H_{7a/3a}), 2.43-2.36$ (2H, m, H₃, 2CHCHMe₂), 1.47 (1H, d, J=8.2 Hz, 4-CHH-7), 1.40 (1H, d, J=8.2 Hz, 4-CHH-7), 1.37-1.27 (14H, m, 3(CH₂)₇Me), 1.00 (3H, d, J=6.6 Hz, 2CHCHMeMe), 0.96 (3H, d, J=6.6 Hz, 2CHCHMeMe), 0.88 (3H, t, J=6.7 Hz, $3(CH_2)_7 Me$; δ_C (100 MHz, CD₂Cl₂) 210.5 (s, C₁), 143.3 (d, 2CH i-prop), 142.5 (s, C₂), 136.3 (d, C₆), 133.8 (C₅), 54.2 (C_{7a}), 51.9 (t, 4-CH₂-7), 47.9 (2d, C₄, C₇), 44.6 (C_{3a}), 40.8 (C₃), 37.7 (t, 3(CH₂)₇Me), 32.3, 30.2, 29.6, 29.7, 29.0 (d, 2CHCHMe₂), 27.2 (t, 3(CH₂)₇Me), 23.0, 22.3 (2q, 2CHCHMe₂), 14.5 (q, 3(CH₂)₇Me); m/z (CI/NH₃) 332 $([MH+NH_3]^+, 0.5\%), 315 (MH^+, 4.0), 287 (0.3), 266 (4.1),$ 249 ([MH+NH₃-C₅H₆]⁺, 100), 150 (4.0), 66 (C₅H₆, 3.7); (HRMS: found MH⁺, 315.2689. $C_{22}H_{35}O^+$ requires 315.2688).

4.6.4. (-)-2-(E)-Isobutylidene)-3(R)-octyl-2,3,3a,4,7,7ahexahydro-4,7-methanoinden-1-one (-)-21. (0.23 g,54%), a very pale yellow transparent oil; $R_{\rm f}$ 0.38 (SiO₂, *n*-hexane/ethyl acetate, 9:1); $[\alpha]_D^{27} - 2.27$ (*c* 8.34 CHCl₃); δ_H (400 MHz, CDCl₃) 6.06 (1H, dd, J=10.6, 2.0 Hz, 2CHiprop), 5.96 (1H, d, J=5.6, 3.0 Hz, H_{5/6}), 5.93 (1H, dd, $J=5.6, 2.8 \text{ Hz}, \text{H}_{6/5}), 3.22 (1\text{H}, \text{m}, \text{H}_{4/7}), 3.00 (1\text{H}, \text{m}, \text{H}_{7/4}),$ 2.95 (1H, dd, J=8.7, 4.8 Hz, H_{3a/7a}), 2.50 (1H, ddd, J=8.7, 4.1, 1.8 Hz, H_{7a/3a}), 2.43-2.34 (2H, m, H₃, 2CHCHMe₂), 1.48 (1H, dt, J=8.3, 1.6 Hz, 4-CHH-7), 1.39 (1H, m, 4-CHH-7), 1.43-1.21 (14H, m, 3(CH₂)₇Me), 1.00 (3H, d, J=6.5 Hz, 2CHCHMeMe), 0.96 (3H, d, J=6.7 Hz, 2CHCHMeMe), 0.88 (3H, t, J=6.7 Hz, $3(CH_2)_7Me$); δ_C (100 MHz, CDCl₃) 210.3 (s, C₁), 143.3 (d, 2CH *i*-prop), 142.5 (s, C₂), 136.3 (d, C₆), 133.7 (C₅), 54.2 (C_{7a}), 51.8 (t, 4-CH₂-7), 47.9 (d, C₄), 47.8 (C₇), 44.7 (C_{3a}), 40.8 (C₃), 37.7 (t, $3(CH_2)_7Me$), 32.3, 30.2, 29.9, 26.6, 29.02CHCHMe₂), 27.1 (t, $3(CH_2)_7Me$), 23.0, 22.30(d. (q, 2CHCH*Me*Me), 22.98 (2CHCHMe*Me*), 14.3 3(CH₂)₇*Me*); *m*/*z* (CI/NH₃) 315 (MH⁺, 3.9%), (q, 266 ([MH+NH₃-C₅H₆]⁺, 4.8), 249 ([MH-C₅H₆]⁺, 100), 163 (7.4), 150 (10), 135 (7.4), 121 (3.5), 107 (5.7), 91 (7.1), 66 (C₅H₆, 15.8); (HRMS: found MH⁺, 315.2692. C₂₂H₃₅O⁺ requires 315.2688).

4.6.5. (+)-2-(*E*)-Benzylidene-3(*S*)-methyl-2,3,3a,4,7,7ahexahydro-4,7-methanoinden-1-one (+)-(22) and (+)-7a(*S*)-(1,3-bisphenyl-3-oxo-propyl)-2-(*E*)-benzylidene-3(*S*)-methyl-2,3,3a,4,7,7a-hexahydro-4,7-methanoinden-1-one (+)-30. Methylated enone (+)-22 (0.22 g, 64%), a pale yellow crystalline solid; $R_{\rm f}$ 0.43 (SiO₂, *n*-hexane:diethyl ether, 2:1); $\delta_{\rm H}$ (400 MHz, CDCl₃) 7.50 (2H, d, *J*=7.3 Hz, 2CHPh), 7.38–7.29 (3H, m, 2CHPh), 7.07 (1H, d, *J*=1.9 Hz, 2CHPh), 5.98 (2H, m, H₅, H₆), 3.30 (1H, m, H₄), 3.11 (1H, m, H₇), 3.08–3.02 (2H, m, H₃, H_{3a}), 2.56 (1H, ddd, *J*=8.7, 4.1, 1.3 Hz, H_{7a}), 1.50 (1H, m, 4-CHH-7), 1.42 (1H, d, *J*=8.2 Hz, 4-CHH-7), 1.18 (3H, d, *J*=7.1 Hz, 3*Me*); $\delta_{\rm C}$ (100 MHz, CDCl₃) 210.3 (s, C₁), 144.8 (2CHPh), 136.7 (d, C_{5/6}), 135.4 (s, C₂), 133.8 (d, C_{6/5}),

132.7 (2CHPh), 130.8 (2CHPh), 129.5 (2CHPh), 129.1 (2CHPh), 52.9 (C_{3a}), 51.8 (t, 4-CH₂-7), 48.0 (d, C₄), 47.5 (C_{7/7a}), 47.5 (C_{7a/7}), 36.64 (C₃), 21.2 (q, 3Me); *m/z* (CI/NH₃) 502 (3.0%), 435 (4.2), 268 ([MH+NH₃]⁺, 2.4), 251 (MH⁺, 36.1), 222 (5.6), 202 $([MH+NH_3-C_5H_6]^+,$ 6.1). $185([MH-C_5H_6]^+, 100), 156$ (7.9), 141 (4.3), 115 (3.2), 91 (4.1), 66 (C₅H₆, 4.3); (HRMS: found MH⁺, 251.1434. $C_{18}H_{19}O^+$ requires 251.1436), and the 7a(S)-alkylated byproduct, (+)-30 (108 mg, 15%) as a transparent pale yellow oil; R_f 0.18 (SiO₂, *n*-hexane/acetone, 9:1); δ_H (400 MHz, CDCl₃) 7.84 (2H, d, J=7.2 Hz, 2CHPh), 7.51 (2H, m, 1[']/ 3'Ph), 7.43–7.48 (3H, m, 1'/3'Ph), 7.30–7.39 (4H, m, 1'/3'Ph), 7.30–7.30 (4H, m, 1'/3'Ph), 7.30–7.30 (4H, m, 1'/3'Ph), 7.30–7.30 (4H, m, 1'/3'Ph), 7.30–7.30 (4H, m, 1'/3'Ph), 7.30 (4H, m, 1'/3'Ph3'Ph), 7.25 (2H, m, 1'/3'Ph), 7.16 (2H, m, 2CHPh, 1'/3'Ph), 6.07 (1H, dd, J=5.6, 2.7 Hz, H₆), 5.97 (1H, dd, J=5.6, 3.0 Hz, H₅), 3.91 (1H, dd, J=10.3, 3.2 Hz, H₁'), 3.79 (1H, dd, J=10.5, 4.9 Hz, 1[']CHHCOPh), 3.54 (1H, dd, J=16.7, 3.3 Hz, 1'CHHCOPh), 3.03 (1H, br. s, H₄), 3.00 (1H, m, H₃), 2.91 (1H, br. s, H₇), 2.44 (1H, dd, *J*=3.8, 1.0 Hz, H_{3a}), 1.61 (1H, d, J=8.6 Hz, 4-CHH-7), 1.36 (1H, d, J=8.6 Hz, 4-CH*H*-7), 1.16 (3H, d, J=7.2 Hz, 3Me); $\delta_{\rm C}$ (100 MHz, CDCl₃) 211.0 (s, C₁), 198.8 (C_{3'}), 145.1 (2CHPh), 141.8 (3'COPh), 138.6 (d, C₅), 137.7 (s, 1'Ph), 135.9 (d, C₆), 135.4 (s, C_2), 133.7 (d, 2CHPh), 133.2 (1'/3'Ph), 131.0 (2d, 2CHPh), 130.4 (d, 1[']/3[']Ph), 129.7 (2CHPh), 129.1 (2d, 2CHPh), 128.9 (1'/3'Ph), 128.5, 128.4, 127.1 (d, 1'/3'Ph), 64.9 (s, C_{7a}), 54.6 (d, C_{3a}), 51.2 (C₇), 4.3 (t, 4-CH₂-7), 48.5 (d, C₄), 47.4 (C_{1'}), 41.4 (t, C_{2'}), 36.4 (d, C₃), 20.6 (q, 3Me); m/z (ES⁺) 939 ([2M+Na]⁺, 57.8%), 518 (10.2), 481 ([M+Na]⁺, 100), 415 (9.6); (HRMS: found M+Na⁺, 481.216. C₃₃H₃₀O₂Na⁺ requires 481.2144).

4.6.6. (-)-2-(E)-Benzylidene-3(R)-methyl-2,3,3a,4,7,7ahexahydro-4,7-methanoinden-1-one (-)-22. (0.13 g, 75%) as a transparent pale yellow oil; $R_{\rm f}$ 0.51 (SiO₂, *n*-hexane/Et₂O, 2:1); $\delta_{\rm H}$ (400 MHz, CDCl₃) 7.51 (2H, d, J=7.2 Hz, 2CHPh), 7.40–7.30 (3H, m, 2CHPh), 7.08 (1H, d, J=2.1 Hz, 2CHPh), 5.99 (2H, m, H₅, H₆), 3.30 (1H, m, H_4), 3.13 (1H, m, H_7), 3.08 (1H, dd, J=8.6, 4.8 Hz, H_{3a}), 3.06 (1H, m, H₃), 2.57 (1H, ddd, J=8.6, 4.0, 1.3 Hz, H_{7a}), 1.51 (1H, dt, J=8.2, 1.6 Hz, 4-CHH-7), 1.43 (1H, d, J=8.2 Hz, 4-CHH-7), 1.18 (3H, d, J=7.3 Hz, 3Me); $\delta_{\rm C}$ (100 MHz, CDCl₃) 210.6 (s, C₁), 144.7 (2CHPh), 136.7 (d, C_{5/6}), 135.4 (s, C₂), 133.8 (d, C_{6/5}), 132.7 (2CHPh), 130.9 (2CHPh), 129.6 (2CHPh), 129.1 (2CHPh), 52.9 (C_{3a}), 51.8 (t, 4-CH₂-7), 48.0 (d, C₄), 47.5 (C_{7/7a}), 47.5 (C_{7a/7}), 36.7 (C₃), 21.2 (q, 3Me); m/z (EI) 250 (M⁺, 53.2%), 222 (8.6), 185 (88.5), 183 (100), 165 (16.3), 156 (33.6), 147 (37.9), 129 (25.5), 128 (32.3), 115 (57.5), 91 ([M-PhCH₂]⁺, 47.2), 66 (92.8); (HRMS: found M⁺, 250.1360. C₁₈H₁₉O⁺ requires 250.1358).

4.6.7. (+)-2-(*E*)-Benzylidene-3(*S*)-octyl-2,3,3a,4,7,7ahexahydro-4,7-methano-inden-1-one (+)-23. (0.27 g, 57%) as a transparent yellow oil; R_f 0.36 (SiO₂, *n*-hexane/ ethyl acetate, 9:1); $[\alpha]_D^{22}$ 1.13 (*c* 8.33 CHCl₃); δ_H (400 MHz, CDCl₃) 7.48 (2H, dd, *J*=7.3, 1.4 Hz, 2CHPh), 7.39–7.30 (3H, m, 2CHPh), 7.09 (1H, d, *J*=2.1 Hz, 2CHPh), 5.98 (2H, m, H₅, H₆), 3.30 (1H, m, H₇), 3.07 (1H, m, H₄), 3.03 (1H, dd, *J*=8.6, 4.8 Hz, H_{7a}), 2.89 (1H, d, *J*=8.1 Hz, H₃), 2.67 (1H, ddd, *J*=8.1, 4.0, 1.3 Hz, H_{3a}), 1.52 (1H, m, 4-CHH-7), 1.47 (1H, m, 4-CHH-7), 1.50–1.24 (12H, m, 3(CH₂)₇Me), 0.87 (3H, t, *J*=6.8 Hz, 3(CH₂)₇Me); δ_C (100 MHz, CDCl₃) 210.6 (s, C₁), 143.9 (C₂), 136.6 (d, C₆), 135.6 (s, 2CHPh), 133.9 (d, C₅), 132.8 (2CHPh), 130.8 (2d, 2CHPh), 129.50 (d, 2CHPh), 129.0 (2d, 2CHPh), 53.4 (C_{7a}), 51.9 (t, 4-CH₂-7), 48.1 (d, C₇), 48.0 (C₄), 45.0 (C_{3a}), 42.3 (C₃), 34.8 (t, $3(CH_2)_7Me$), 32.2, 30.0, 29.9, 29.6, 27.6, 23.0, 14.5 (q, $3(CH_2)_7Me$); *m*/*z* (CI/NH₃) 349 (MH⁺, 9.7%), 320 (1.3), 283 ([MH-C₅H₆]⁺, 48.9), 169 (4.1), 141 (10.4), 128 (3.3), 115 (9.8), 91 (11.1), 66 (C₅H₆, 100), 55 (5.5); (HRMS: found MH⁺, 349.25394. C₂₅H₃₃O⁺ requires 349.25314).

4.6.8. (-)-2-(E)-Benzylidene-3(R)-octyl-2,3,3a,4,7,7ahexahydro-4,7-methano-inden-1-one (-)-23. (0.40 g,83%) as a transparent pale vellow oil; $R_{\rm f}$ 0.31 (SiO₂, *n*-hexane/ethyl acetate, 9:1); $[\alpha]_{D}^{24} = -0.87$ (*c* 12.09 CHCl₃); $\delta_{\rm H}$ (400 MHz, CDCl₃) 7.48 (2H, dd, J=8.6, 1.5 Hz, 2CHPh), 7.39-7.32 (3H, m, 2CHPh), 7.09 (1H, d, J=2.2 Hz, 2CHPh), 5.99 (2H, m, H₅, H₆), 3.30 (1H, m, H₇), 3.07-3.06 (1H, m, H₄), 3.03 (1H, dd, J=8.7, 4.8 Hz, H_{7a}), 2.90 (1H, d, J=8.1 Hz, H₃), 2.67 (1H, ddd, J=8.1, 4.0, 1.3 Hz, H_{3a}), 1.62-1.18 (12H, m, 3(CH₂)₇Me), 1.52 (1H, m, 4-CHH-7), 1.47 (1H, m, 4-CHH-7), 0.88 (3H, t, J=6.7 Hz, $3(CH_2)_7Me$; δ_C (100 MHz, CDCl₃) 210.5 (s, C₁), 143.9 (C₂), 136.6 (d, C₆), 135.6 (s, 2CHPh), 133.9 (d, C₅), 132.8 (2CHPh), 130.8 (2d, 2CHPh), 129.50 (d, 2CHPh), 129.0 (2d, 2CHPh), 53.4 (C_{7a}), 51.9 (t, 4-CH₂-7), 48.1 (d, C₇), 48.0 (C₄), 45.1 (C_{3a}), 42.3 (C₃), 34.8 (t, 3(CH₂)₇Me), 32.2, 30.0, 29.9, 29.6, 27.6, 23.0, 14.5 (q, 3(CH₂)₇Me); m/z (CI/ NH_3) 349 (MH⁺, 11.4%), 320 (2.9), 300 (9.3), 284 $([MH-C_5H_6]^+, 70.9), 169 (16.9), 155 (10.8), 141 (22.9),$ 115 (12.8), 91 (12.6), 66 (C₅H₆, 16.3); (HRMS: found MH⁺, 349.25362. C₂₅H₃₃O⁺ requires 349.25314).

4.6.9. (\pm) -2-(4-(E)-Fluorobenzylidene)-3(R/S)-methyl-2,3,3a,4,7,7a-hexahydro-4,7-methanoinden-1-one (\pm) -24. (0.15 g, 83%), a pale yellow crystalline solid; $R_f 0.47$ (SiO₂, *n*-hexane/Et₂O, 2:1); $\delta_{\rm H}$ (400 MHz, CD₂Cl₂) 7.42 (2H, m, 2CHPh·p-F), 6.99 (2H, m, 2CHPh·p-F), 6.89 (1H, d, J=2.1 Hz, 2CHPh·p-F), 5.89 (1H, dd, J=5.6, 2.8 Hz, H₆), 5.85 (1H, dd, J=5.6, 2.7 Hz, H₅), 3.15 (1H, m, H₄), 3.02 (1H, m, H₇), 2.94 (1H, m, H_{3a}), 2.90 (1H, dd, J=14.3, 7.1 Hz, H₃), 2.47 (1H, ddd, J=8.6, 4.0, 1.4 Hz, H_{7a}), 1.39 (1H, m, 4-CHH-7), 1.34 (1H, m, 4-CHH-7), 1.07 (3H, d, J=7.1 Hz, 3Me); δ_{C} (100 MHz, $CD_{2}Cl_{2}$) 209.9 (s, C_{1}), 163.7 (sd, $J_{C,F}=249.0$ Hz, 2CHPh·p-F), 145.1 (sd, $J_{C,F}=2.3$ Hz, C₂), 136.9 (d, C₅), 134.2 (C₆), 133.1 (dd, J_{C.F}=8.3 Hz, 2CHPh·p-F), 132.2 (sd, $J_{C,F}$ =3.2 Hz, $2CHPh\cdot p-F),$ 131.2 (d, $2CHPh \cdot p - F),$ 116.4 (dd. J_{C,F}=21.7 Hz, 2CHPh·p-F), 53.2 (C_{3a}), 52.6 (t, 4-CH₂-7), 48.4 (d, C₄), 48.0 (C₇), 47.9 (C_{7a}), 36.8 (C₃), 21.2 (q, 3Me); *m*/*z* (CI/NH₄) 286 ([MH+NH₄]⁺, 1.5%), 269 (MH⁺, 31.2), 240 (3.9), 220 (7.7), 203 ($[MH-C_5H_6]^+$, 100); (HRMS: found MH⁺, 269.1333. C₁₈H₁₈OF⁺ requires 269.1342).

4.6.10. (+)-2-(4-(*E*)-Fluorobenzylidene)-3(*S*)-methyl-2,3,3a,4,7,7a-hexahydro-4,7-methanoinden-1-one (+)-24 and (+)-7a(*S*)-[1,3-bis-(4-fluoro-phenyl)-3-oxo-propyl]-2-(4-(*E*)-fluorobenzylidene)-3(*S*)-methyl-2,3,3a,4,7,7a-hexahydro-4,7-methano-inden-1-one (+)-31. Methylated enone (+)-24 (0.20 g, 55%) as a transparent pale yellow oil; R_f 0.29 (SiO₂, *n*-hexane/acetone, 9:1); $[\alpha]_D^{20}$ 0.89 (*c* 8.50, CHCl₃); δ_H (400 MHz, CDCl₃) 7.49 (2H, m, 2CH*Ph*·*p*-F), 7.06 (2H, m, 2CH*Ph*·*p*-F), 7.03 (1H, d, *J*=2.0 Hz, 2C*H*Ph·*p*-F), 5.99 (2H, m, H₆, H₅), 3.30 (1H, m, H₄), 3.12 (1H, m, H₇), 3.07 (1H, dd, *J*=8.6, 4.8 Hz, H_{3a}), 3.00 (1H, m, H₃), 2.57 (1H, ddd, J=8.7, 4.1, 1.4 Hz, H_{7a}), 1.51 (1H, m, 4-CHH-7), 1.43 (1H, m, 4-CHH-7), 1.17 (3H, d, J=7.3 Hz, 3Me); δ_C (100 MHz, CDCl₃) 210.1 (s, C₁), 163.3 (sd, J_{C,F}=250.0 Hz, 2CHPh·p-F), 144.3 (*J*_{C,F}=2.9 Hz, C₂), 136.7 (d, C₅), 133.7 (C₆), 132.7 (dd, J_{CF} =8.1 Hz, 2CHPh·p-F), 131.6 (sd, J_{CF} =3.6 Hz, 2CHPh·p-F), 131.4 (d, 2CHPh·p-F), 116.3 (dd, J_{C.F}=21.2 Hz, 2CHPh·p-F), 52.9 (d, C_{3a}), 51.8 (t, 4-CH₂-7), 48.0 (d, C₄), 47.5 (C_7 , C_{7a}), 36.5 (C_3), 21.0 (q, 3Me); *m/z* (CI/NH₄) 286 ([MH+NH₄]⁺, 1.5%), 269 (MH⁺, 34.7), 240 (6.5), 220 (6.1), 203 ($[MH-C_5H_6]^+$, 100), 174 (10.5), 66 (7.5); (HRMS: found MH⁺, 269.1343. C₁₈H₁₈OF⁺ requires 269.1342), and the 7a(S)-alkylated by-product (+)-31 (108 mg, 15%) as a transparent pale yellow oil; $R_{\rm f}$ 0.18 $(SiO_2, n-hexane/acetone, 9:1); [\alpha]_D^{18} 0.44 (c 6.65, CHCl_3);$ δ_H (400 MHz, CDCl₃) 7.85 (2H, m, 3'*Ph*·*p*-F), 7.51 (2H, m, Ph·p-F), 7.43 (2H, m, Ph·p-F), 7.14 (1H, d, J=2.2 Hz, 2CHPh·p-F), 7.11-7.02 (4H, m, Ph·p-F), 6.95 (2H, m, Ph·p-F), 6.08 (1H, dd, J=5.6, 2.9 Hz, H_{5/6}), 5.97 (1H, dd, J=5.6, 3.0 Hz, H_{6/5}), 3.85 (1H, dd, J=10.6, 3.3 Hz, H₁'), 3.66 (1H, m, 1'CHHCOPh·p-F), 3.42 (1H, dd, J=16.7, 3.3 Hz, 1'CHHCOPh.p-F), 3.08 (1H, br. s, H₄), 2.96 (1H, dd, J=14.3, 7.3 Hz, H₃), 2.84 (1H, br. s, H₇), 2.41 (1H, dd, J=4.0, 1.3 Hz, H_{3a}), 1.63 (1H, m, 4-CHH-7), 1.39 (1H, m, 4-CH*H*-7), 1.17 (3H, d, J=7.3 Hz, 3Me); $\delta_{\rm C}$ (100 MHz, $CDCl_3$) 210.4 (s, C₁), 196.7 (C_{3'}), 165.7 (sd, $J_{C,F}$ =253.4 Hz, $(J_{C,F}=250.4 \text{ Hz},)$ $Ph \cdot p - F),$ $Ph \cdot p - F),$ 163.3 161.8 $(J_{C,F}=244.4 \text{ Hz}, Ph \cdot p \cdot F)$, 144.2 $(J_{C,F}=2.3 \text{ Hz}, Ph \cdot p \cdot F)$, 138.0 (d, $C_{5/6}$), 137.7 (sd, $J_{C,F}$ =12.7 Hz, *Ph*·*p*-F), 135.7 (d, $C_{6/5}$), 133.6 (sd, $J_{C,F}=9.6$ Hz, $Ph\cdot p$ -F), 132.6 (dd, J_{C,F}=8.8 Hz, Ph·p-F), 132.4 (d, 2CHPh·p-F), 131.4 (dd, J_{C,F}=7.2 Hz, *Ph*·*p*-F), 131.1 (sd, J_{C,F}=12.7 Hz, *Ph*·*p*-F), 130.6 (dd, $J_{C,F}$ =8.8 Hz, *Ph*·*p*-F), 115.9 ($J_{C,F}$ =21.6 Hz, *Ph*·*p*-F), 115.6, 115.0 ($J_{C,F}$ =20.8 Hz, *Ph*·*p*-F), 64.5 (s, C_{7a}), 54.7 (d, C_{3a}), 50.9 (C₇), 48.8 (t, 4-CH₂-7), 47.6 (d, C₄), 46.7 (C_{1'}), 41.1 (t, C_{2'}), 35.9 (d, C₃), 20.2 (q, 3Me); $\delta_{\rm F}$ $(376 \text{ MHz}, \text{CDCl}_3) - 105.7 \text{ (Ph} \cdot p - F), -110.4, -116.5; m/z$ (ES⁺) 1047 ([2M+Na]⁺, 3.7%), 551 (4.4), 535 ([M+Na]⁺, 100), 469 ($[M-C_5H_6]^+$, 87.0), 449 (3.1), 413 (4.4), 331 (3.4); (HRMS: found M+Na⁺, 535.1843. C₃₃H₂₇O₂F₃Na⁺ requires 535.1861).

4.7. Microwave assisted *retro* Diels-Alder reaction: representative procedure

4.7.1. (+)-5-(E)-Isobutylidene-4(S)-methyl-cyclopent-2enone (+)-32. To a stirring solution of (+)-16 (0.22 g, 1.02 mmol) and maleic anhydride (5.0 equiv.) in anhydrous DCM (5.1 cm³) was added 1.0 M methyl aluminiumdichloride in hexanes (0.5 equiv.) at room temperature under a nitrogen stream. The mixture was heated at 60 °C for 30 min in a microwave (Smith-Creator), and cooled to room temperature under a nitrogen stream. Flash silica (0.94 g) was added and the solvent removed in vacuo to afford preabsorbed crude product. Purification by flash column chromatography (SiO₂), eluting with n-hexane/diethyl ether (5:1), gave recovered enone (+)-16 (32 mg, 14%) as a pale yellow transparent oil and an inseparable mixture (98:2) of *E*- and *Z*-isomers of dienone (+)-32 (81.8 mg, 54%) as a transparent yellow oil; $R_{\rm f}$ 0.31 (SiO₂, *n*-hexane/ diethyl ether, 2:1); $\delta_{\rm H}$ (400 MHz, CD₂Cl₂) 7.37 (1H, dd, J=5.9, 2.6 Hz, H₃), 6.19 (1H, d, J=10.7 Hz 5CHi-prop), 6.13 (1H, dd, J=5.9, 1.7 Hz, H₂), 3.40 (1H, m, H₄), 2.59 (1H, m, 5CHCHMe₂), 1.18 (3H, d, J=7.2 Hz, 4Me), 1.00

(3H, d, *J*=6.7 Hz, 5CHCH*Me*Me), 0.98 (3H, d, *J*=6.6 Hz, 5CHCHMe*Me*); $\delta_{\rm C}$ (100 MHz, CD₂Cl₂) 197.4 (s, C₁), 164.2 (d, C₃), 142.0 (5*C*H *i*-prop), 137.7 (s, C₅), 134.5 (d, C₂), 39.0 (d, C₄), 29.3 (5CHC*H*Me₂), 22.6 (q, 5CHCH*Me*Me), 22.6 (5CHCHMe*Me*), 19.4 (4*Me*); *m*/z (CI/NH₃) 233 (5.2%), 220 (12.3), 205 (19.9), 168 ([MH+NH₃]⁺, 7.0), 151 (MH⁺, 100); (HRMS: found MH⁺, 151.1120. C₁₀H₁₅O⁺ requires 151.1123).

4.7.2. (-)-5-(*E*)-Isobutylidene-4(*R*)-methyl-cyclopent-2enone (-)-32. (69.7 mg, 73%), a transparent yellow oil; $R_{\rm f}$ 0.32 (SiO₂, *n*-hexane/diethyl ether, 2:1); $[\alpha]_{\rm D}^{22}$ -10.52 (*c* 4.44 CHCl₃); $\delta_{\rm H}$ (250 MHz, CD₂Cl₂) 7.40 (1H, ddd, *J*=5.8, 2.4, 1.1 Hz, H₃), 6.25 (1H, dt, *J*=10.6, 1.0 Hz 5C*Hi*-prop), 6.19 (1H, dd, *J*=5.8, 1.7 Hz, H₂), 3.47 (1H, m, H₄), 2.65 (1H, m, 5CHCHMe₂), 1.23 (3H, d, *J*=7.2 Hz, 4Me), 1.05 (3H, d, *J*=6.5 Hz, 5CHCHMeMe), 1.03 (3H, d, *J*=6.5 Hz, 5CHCHMeMe); $\delta_{\rm C}$ (100 MHz, CD₂Cl₂) 197.4 (s, C₁), 164.2 (d, C₃), 142.0 (5CH *i*-prop), 136.7 (s, C₅), 134.5 (d, C₂), 39.0 (C₄), 28.7 (5CHCHMe₂), 22.7 (q, 5CHCHMeMe), 22.6 (5CHCHMeMe), 19.4 (4Me); *m*/*z* (CI/NH₃) 168 ([MH+NH₃]⁺, 7.4%), 151 (MH⁺, 100); (HRMS: found MH⁺, 151.1123. C₁₀H₁₅O⁺ requires 151.1123).

4.7.3. (+)-5-(E)-Isobutylidene-4(S)-octyl-cyclopent-2enone (+)-33. (94.2 mg, 74%) a transparent pale yellow oil; $R_{\rm f}$ 0.28 (SiO₂, *n*-hexane/ethyl acetate, 9:1); $[\alpha]_{\rm D}^{22}$ 1.70 (c 4.65 CHCl₃); $\delta_{\rm H}$ (400 MHz, CD₂Cl₂) 7.46 (1H, dd, J=6.0, 2.5 Hz, H₃), 6.19 (1H, m, H₂), 6.17 (1H, dd, J=1.4 Hz, 5CH iprop), 3.42 (1H, m, H₄), 2.58 (1H, m, 5CHCHMe₂), 1.75 (1H, m, 4CHH(CH₂)₆Me), 1.45 (1H, m, 4CHH(CH₂)₆Me), 1.26-1.12 (12H, m, 4CH₂(CH₂)₆Me), 0.98 (6H, m, 5CHCHMe₂), 0.79 (3H, t, J=6.5 Hz, $4(CH_2)_7Me$); δ_C (100 MHz, CD_2Cl_2) 197.8 (s, C₁), 162.8 (d, C₃), 141.9 (5*C*H *i*-prop), 136.4 (s, C₅), 135.3 (d, C₂), 44.0 (C₄), 33.7 (t, 4CH₂(CH₂)₆Me), 32.6 (4CH₂(CH₂)₆Me), 30.6, 30.2, 29.3 (d, 5CHCHMe₂), 26.6 (t, 4CH₂(CH₂)₆Me), 23.4, 22.7 (q, 5CHCHMeMe), 22.5 (5CHCHMeMe), 14.7 (4(CH₂)₇Me); m/z (CI/NH₃) 266 ([MH+NH₃]⁺, 2.0%), 249 (MH⁺, 100), 163 (4.0), 150 (5.8), 135 (3.7), 121 (2.3), 107 (3.7), 91 (2.2); (HRMS: found MH+, 249.2222. C₁₇H₂₉O⁺ requires 249.2218).

4.7.4. (-)-5-(E)-Isobutylidene-4(R)-octyl-cyclopent-2enone (-)-33. (95 mg, 60%) a transparent pale yellow oil; $R_{\rm f} 0.28$ (SiO₂, *n*-hexane/ethyl acetate, 9:1); $[\alpha]_{\rm D}^{24} - 1.76$ (c 4.35 CHCl₃); $\delta_{\rm H}$ (400 MHz, CD₂Cl₂) 7.56 (1H, ddd, J=6.0, 2.7, 1.0 Hz, H₃), 7.47 (0.06H, dd, J=6.0, 2.6 Hz, Z-isomer H₃), 6.31-6.27 (2H, m, H₂, 5CHi-prop), 6.23 (0.06H, m, Z-isomer H₂), 5.83 (0.06H, d, J=9.8 Hz, Z-isomer 5CHiprop), 3.93 (0.06H, m, Z-isomer H₄), 3.53 (1H, m, H₄), 3.28 (0.06H, m, Z-isomer 5CHCHMe₂), 2.69 (1H, m, 5CHCHMe₂), 1.86 (1H, m, 4CHH(CH₂)₆Me), 1.55 (1H, m, 4CHH(CH₂)₆Me), 1.29 (12H, m, 4CH₂(CH₂)₆Me), 1.10 (3H, d, J=6.7 Hz, 5CHCHMeMe), 1.08 (3H, d, J=6.8 Hz, 5CHCHMeMe), 1.03 (0.18 Hz, d, J=2.1 Hz, Z-isomer 5CHCHMeMe), 1.02 (0.18 Hz, d, J=2.1 Hz, Z-isomer 5CHCHMeMe), 0.90 (3H, t, J=6.8 Hz, $4(CH_2)_7Me$); δ_C (100 MHz, CD₂Cl₂) 197.65 (s, C₁), 162.7 (d, C₃), 161.3 (Z-isomer C₃), 147.1 (Z-isomer 5CH *i*-prop), 141.9 (5CH *i*-prop), 136.7 (Z-isomer C₂), 136.4 (s, C₅), 135.3 (d, C₂), 46.2 (Z-isomer C₄), 44.0 (C₄), 34.3 (t, Z-isomer 4CH₂(CH₂)₆Me), 33.7 (4CH₂(CH₂)₆Me), 32.6 (4CH₂(CH₂)₆Me), 30.5, 30.5 (Z-isomer 4CH₂(CH₂)₆Me), 30.2 (4CH₂(CH₂)₆Me), 30.0,

29.2 (d, 5CHCHMe₂), 26.6 (t, 4CH₂(CH₂)₆Me), 26.3 (d, Z-isomer 5CHCHMe₂), 23.4 (t, 4(CH₂)₇Me), 23.0 (q, Z-isomer 5CHCHMeMe), 22.9 (Z-isomer 5CHCHMeMe), 22.7 (q, 5CHCHMeMe), 22.4 (5CHCHMeMe), 14.6 (4(CH₂)₇Me); m/z (CI/NH₃) 266 ([MH+NH₃]⁺, 3.8%), 249 (MH⁺, 100), 163 (4.3), 149 (6.1), 135 (4.6), 121 (3.0), 107 (4.8), 91 (3.0); (HRMS: found MH⁺, 249.2219. C₁₇H₂₉O⁺ requires 249.2218).

4.7.5. (-)-**5**-(*E*)-Benzylidene-4(*S*)-methyl-cyclopent-2enone (-)-**34.** (54.5 mg, 74%) as a transparent pale yellow oil; $R_f 0.34$ (SiO₂, *n*-hexane/ethyl acetate, 3:1); $[\alpha]_{21}^{21} - 0.61$ (*c* 5.34 CHCl₃); δ_H (400 MHz, CD₂Cl₂) 7.53 (1H, ddd, *J*=5.9, 2.7, 1.0 Hz, H₃), 7.48 (2H, d, *J*=7.2 Hz 5CH*Ph*), 7.34-7.25 (3H, m, 5CH*Ph*), 7.21 (1H, m, 5C*HPh*), 6.27 (1H, dd, *J*=5.9, 1.9 Hz, H₂), 3.86 (1H, m, H₄), 1.10 (3H, d, *J*=7.2 Hz, 4Me); δ_C (100 MHz, CD₂Cl₂) 197.7 (s, C₁), 164.9 (d, C₃), 139.4 (s, 5CH*Ph*), 135.6 (C₅), 134.1 (d, C₂), 131.8 (5CHPh), 131.4 (2d, 5CH*Ph*), 129.9 (d, 5CH*Ph*), 129.5 (2d, 5CH*Ph*), 39.6 (d, C₄), 16.9 (q, 4Me); *m/z* (CI/ NH₃) 185 (MH⁺, 100%), 202 ([MH+NH₃]⁺, 2.4); (HRMS: found MH⁺, 185.0969. C₁₃H₁₃O⁺ requires 185.0967).

4.7.6. (+)-**5**-(*E*)-Benzylidene-4(*R*)-methyl-cyclopent-2enone (+)-**34.** (62.0 mg, 69%) as a transparent pale yellow oil; $R_f 0.33$ (SiO₂, *n*-hexane/ethyl acetate, 3:1); [α]₁¹⁸ 0.88 (*c* 5.02 CHCl₃); $\delta_{\rm H}$ (400 MHz, CD₂Cl₂) 7.53 (1H, ddd, *J*=5.9, 2.6, 0.8 Hz, H₃), 7.47 (2H, d, *J*=7.3 Hz, 5CH*Ph*), 7.34 (2H, t, *J*=7.0 Hz, 5CH*Ph*), 7.29 (1H, dd, *J*=5.9, 1.9 Hz, H₂), 3.85 (1H, m, H₄), 1.10 (3H, d, *J*=7.2 Hz, 4Me); $\delta_{\rm C}$ (100 MHz, CD₂Cl₂) 197.7 (s, C₁), 164.9 (d, C₃), 139.4 (s, 5CH*Ph*), 135.6 (C₅), 134.1 (d, C₂), 131.8 (5CH*Ph*), 131.4 (2d, 5CH*Ph*), 130.0 (d, 5CH*Ph*), 129.5 (2d, 5CH*Ph*), 39.6 (d, C₄), 16.9 (q, 4Me); *m/z* (CI/NH₃) 202 ([MH+NH₃]⁺, 3.0%), 185 (MH⁺, 100); (HRMS: found MH⁺, 185.0967).

4.7.7. (+)-5-(*E*)-Benzylidene-4(*S*)-octyl-cyclopent-2enone (+)-35. (91 mg, 56%) as a transparent pale yellow oil; E-isomer; R_f 0.26 (SiO₂, *n*-hexane/ethyl acetate, 9:1); $[\alpha]_{D}^{22}$ 0.61 (c 6.07 CHCl₃); δ_{H} (400 MHz, CD₂Cl₂) 7.63 (1H, ddd, J=6.0, 2.7, 1.0 Hz, H₃), 7.47-7.44 (2H, m, 5CHPh), 7.36-7.25 (4H, m, 5CHPh, 5CHPh), 6.31 (1H, dd, J=6.0, 1.9 Hz, H₂), 3.84 (1H, m, H₄), 1.79–1.70 (1H, m, 4CHH(CH₂)₆Me), 1.33-1.25 (1H, m, 4CHH(CH₂)₆Me), 1.23-1.05 (12H, m, 4CH₂(CH₂)₆Me), 0.77 (3H, t, J=7.0 Hz, 4(CH₂)₇Me); $\delta_{\rm C}$ (100 MHz, CD₂Cl₂) 197.7 (s, C₁), 163.2 (d, C₃), 138.3 (s, 5CHPh), 135.8 (C₅), 134.9 (d, C₂), 131.7 (5CHPh), 131.2 (2d, 5CHPh), 129.9 (d, 5CHPh), 129.4 (2d, 5CHPh), 44.7 (d, C₄), 32.6 (t, 4(CH₂)₇Me), 31.0, 30.3, 30.1, 29.9, 26.8, 23.4, 14.6 (q, 4(CH₂)₇Me); m/z (CI/ NH₃) 300 ([MH+NH₃]⁺, 11.5%), 283 (MH⁺, 100), 195 (6.2), 186 (8.3), 169 (4.7), 156 (5.9), 141 (8.6), 128 (5.0), 115 (5.8), 91 (6.9); (HRMS: found MH⁺, 283.2070. $C_{20}H_{27}O^+$ requires 283.2062); Z-isomer; $R_f 0.36$ (SiO₂, nhexane/ethyl acetate, 9:1); $\delta_{\rm H}$ (400 MHz, CDCl₃) 7.98 (2H, dd, J=8.3, 1.6 Hz, 5CHPh), 7.48 (1H, dd, J=6.0, 2.6 Hz, H₃), 7.44–7.32 (3H, m, 5CHPh), 6.76 (1H, br. s, 5CHPh), 6.34 (1H, dd, J=6.0, 1.8 Hz, H₂), 3.47 (1H, m, H₄), 1.89-1.81 (1H, m, 4CHH(CH₂)₆Me), 1.66-1.56 (1H, m, 4CHH(CH₂)₆Me), 1.43-1.23 (12H, m, 4CH₂(CH₂)₆Me), 0.88 (3H, t, J=6.5 Hz, 4(CH₂)₇Me); $\delta_{\rm C}$ (100 MHz, CDCl₃) 196.0 (s, C₁), 160.1 (d, C₃), 138.0 (s, C₅), 137.2 (d, C₂), 136.5 (5CHPh), 134.8 (s, 5CHPh), 131.2 (2d, 5CHPh), 129.8 (d, 5CHPh), 128.4 (2d, 5CHPh), 47.7 (d, C₄), 34.4 (t, $4(CH_2)_7Me$), 32.2, 30.2, 29.8, 29.6, 26.6, 23.0, 14.4 (q, $4(CH_2)_7Me$); m/z (CI/NH₃) 300 ([MH+NH₃]⁺, 1.4%), 283 (MH⁺, 100), 225 (6.7), 211 (9.5), 199 (6.7), 183 (20.6), 169 (32.5), 156 (35.0), 141 (60.8), 128 (24.6), 115 (36.5), 91 (26.2), 55 (11.2); (HRMS: found MH⁺, 283.2065. C₂₀H₂₇O⁺ requires 283.2062).

4.7.8. (-)-5-(E)-Benzylidene-4(R)-octyl-cyclopent-2enone (-)-35. (0.15 g, 54%) as a transparent pale yellow oil; $R_f 0.23$ (SiO₂, *n*-hexane/ethyl acetate, 9:1); $[\alpha]_D^{22} = -0.48$ (c 4.67 CHCl₃); $\delta_{\rm H}$ (400 MHz, CDCl₃) 7.69 (1H, ddd, J=6.0, 2.7, 0.8 Hz, H₃), 7.52 (2H, dd, J=7.2, 1.4 Hz, 5CHPh), 7.43-7.34 (4H, m, 5CHPh, 5CHPh), 6.45 (1H, dd, J=6.0, 1.9 Hz, H₂), 3.92 (1H, m, H₄), 1.87-1.79 (1H, m, 4CHH(CH₂)₆Me), 1.43-1.33 (1H, m, 4CHH(CH₂)₆Me), 1.31-1.08 (12H, m, 4CH₂(CH₂)₆Me), 0.86 (3H, t, J=6.8 Hz, 4(CH₂)₇Me); δ_C (100 MHz, CDCl₃) 197.9 (s, C₁), 162.8 (d, C₃), 137.6 (s, 5CHPh), 135.2 (C₅), 134.8 (d, C₂), 132.0 (5CHPh), 130.8 (2d, 5CHPh), 129.6 (d, 5CHPh), 129.1 (2d, 5CHPh), 44.7 (d, C₄), 32.2 (t, 4(CH₂)₇Me), 30.6, 29.8, 29.6, 29.5, 26.4, 23.0, 14.4 (q, 4(CH₂)₇Me); m/z (CI/NH₃) 300 $([MH+NH_3]^+, 5.7\%), 283 (MH^+, 100), 186 (3.0), 169 (4.5),$ 156 (3.5), 141 (6.7), 128 (2.9), 115 (4.5), 91 (4.3); (HRMS: found MH⁺, 283.2070. C₂₀H₂₇O⁺ requires 283.2062).

4.7.9. (±)-**5**-(**4**-(*E*)-Fluorobenzylidene)-**4**(*R*/*S*)-methylcyclopent-2-enone (±)-**36**. (96.9 mg, 86%) as a transparent pale yellow oil; R_f 0.35 (SiO₂, *n*-hexane/ethyl acetate, 3:1); δ_H (400 MHz, CD₂Cl₂) 7.52 (1H, ddd, *J*=5.9, 2.5, 0.8 Hz, H₃), 7.47 (2H, m, 5CH*Ph*·*p*-F), 7.21 (1H, m, 5C*H*Ph·*p*-F), 7.04 (2H, m, 5CH*Ph*·*p*-F), 7.21 (1H, m, 5C*H*Ph·*p*-F), 3.81 (1H, m, H₄), 1.10 (3H, d, *J*=7.2 Hz, 4Me); δ_C (100 MHz, CD₂Cl₂) 197.5 (s, C₁), 164.6 (d, C₃), 163.8 (sd, $J_{C,F}$ =250.0 Hz, 5CH*Ph*·*p*-F), 139.1 ($J_{C,F}$ =1.6 Hz, C₅), 134.1 (d, C₂), 133.23 (dd, $J_{C,F}$ =8.4 Hz, 5CH*Ph*·*p*-F), 131.9 (sd, $J_{C,F}$ =21.6 Hz, 5CH*Ph*·*p*-F), 39.5 (C₄), 16.9 (q, 4Me); *m/z* (CI/ NH₃) 220 ([MH+NH₃]⁺, 3.7%), 203 (MH⁺, 100); (HRMS: found MH⁺, 203.0873. C₁₃H₁₂OF⁺ requires 203.0872).

4.7.10. (-)-5-(4-(*E*)-Fluorobenzylidene)-4(*S*)-methylcyclopent-2-enone (-)-36. (0.14 g, 91%) as a transparent yellow oil; R_f 0.31 (SiO₂, *n*-hexane/ethyl acetate, 3:1); [α]₂₂²² -0.87 (*c* 7.50, CHCl₃); δ_H (400 MHz, CD₂Cl₂) 7.51 (1H, m, H₃), 7.45 (2H, m, 5CH*Ph*·*p*-F), 7.21 (1H, br. s, 5CH*P*h·*p*-F), 7.03 (2H, m, 5CH*Ph*·*p*-F), 6.26 (1H, dd, *J*=5.9, 1.8 Hz, H₂), 3.80 (1H, m, H₄), 1.08 (3H, d, *J*=7.2 Hz, 4Me); δ_C (100 MHz, CD₂Cl₂) 197.5 (s, C₁), 164.6 (d, C₃), 163.8 (sd, *J*_{C,F}=250.0 Hz, 5CH*Ph*·*p*-F), 139.1 (*J*_{C,F}=2.4 Hz, C₅), 134.1 (d, C₂), 133.2 (dd, *J*_{C,F}=8.8 Hz, 5CH*Ph*·*p*-F), 131.9 (sd, *J*_{C,F}=3.2 Hz, 5CH*Ph*·*p*-F), 39.4 (d, C₄), 16.9 (q, 4Me); *m*/*z* (CI/NH₃) 220 ([MH+NH₃]⁺, 3.7%), 203 (MH⁺, 100), 174 (9.4), 159 (6.6), 133 (4.9); (HRMS: found MH⁺, 203.0877. C₁₃H₁₂OF⁺ requires 203.0872).

Acknowledgements

and the Ministry of Science and Technology and NIBGE, Pakistan for a PhD scholarship award (M. I.). Drs. Jérôme Dauvergne, Paul Evans and Alan Happe are thanked for helpful advice and discussions.

References and notes

- (a) Straus, D. S.; Glass, C. K. *Med. Res. Rev.* 2001, *21*, 185. (b) Roberts, S. M.; Santoro, M. G.; Sickle, E. S. *J. Chem. Soc.*, *Perkin Trans. 1* 2002, 1735.
- (a) Kikuchi, H.; Tsukitani, Y.; Iguchi, K.; Yamada, Y. *Tetrahedron Lett.* **1983**, *24*, 1549. (b) Nagaoka, H.; Iguchi, K.; Miyakoshi, T.; Yamada, N.; Yamada, Y. *Tetrahedron Lett.* **1986**, *27*, 223.
- 3. Fitzpatrick, F. A.; Wynalda, M. A. J. Biol. Chem. 1983, 258, 11713.
- (a) Bohlmann, F.; Borthakur, N.; King, R. M.; Robinson, H. *Phytochemistry* **1982**, *21*, 125. (b) Bohlmann, F.; Singh, P.; Jakupovic, J.; King, R. M.; Robinson, H. *Phytochemistry* **1982**, *21*, 371. (c) Krüger, G.; Harde, C.; Bohlmann, F. *Tetrahedron Lett.* **1985**, *26*, 6027. (d) Liu, Z. Y.; Dong, H.; Chu, X. J. *Tetrahedron* **1994**, *50*, 12337. (e) Liu, Z. Y.; Chu, X.-J. *Tetrahedron Lett.* **1993**, *34*, 3885.
- (a) Fukushima, S.; Takeuchi, Y.; Kishimoto, S.; Yamashita, S.; Uetsuki, K.; Shirakawa, S.; Suzuki, M.; Furuta, K.; Noyori,

R.; Sasaki, H.; Kikuchi, Y.; Kita, T.; Yamori, T.; Sawada, J.; Kojima, M.; Hazato, A.; Kurozumi, S.; Fukushima, M. *Anti-Cancer Drugs* **2001**, *12*, 221. (b) Weaving, R.; Roulland, E.; Monneret, C.; Florent, J. C. *Tetrahedron Lett.* **2003**, *44*, 2579.

- (a) Morrow, J. D.; Awad, J. A.; Boss, H. J.; Blair, A.; Roberts, L. J. Proc. Natl. Acad. Sci. 1992, 89, 10271–10725. (b) Jung, M. E.; Kers, A.; Subbanagounder, G.; Berliner, J. A. J. Chem. Soc., Chem. Commun. 2003, 196–197.
- (a) Suzuki, M.; Kawagishi, T.; Yanagisawa, A.; Susuki, T.; Okamura, N.; Noyori, R. *Bull. Chem. Soc. Jpn* **1988**, *61*, 1299–1312. (b) Wiel, J.-P.; Roussac, F. J. Chem. Soc., Chem. Commun. **1976**, 446–447.
- Suzuki, M.; Kawagishi, T.; Noyori, R. *Tetrahedron Lett.* 1981, 22, 1809.
- Yamada, Y. M. A.; Ikegami, S. Tetrahedron Lett. 2000, 41, 2165–2169.
- Klunder, A. J. H.; Zhu, J.; Zwanenburg, B. Chem. Rev. 1999, 99, 1163–1190.
- 11. Wiel, J.-P.; Roussac, F. J. Chem. Soc., Chem. Commun. 1976, 446–447.
- (a) Iqbal, M.; Evans, P. Tetrahedron Lett. 2003, 44, 5741-5745.
 (b) Iqbal, M.; Li, Y.; Evans, P. Tetrahedron 2004, 60, 2531-2538.
- 13. Takano, S.; Inomata, K.; Ogasawara, K. J. Chem. Soc., Chem. Commun. 1989, 271.